
Load Shedding in Classifying Multi-Source Streaming Data:
A Bayes Risk Approach

Yijian Bai
UCLA

bai@cs.ucla.edu

Haixun Wang
IBM T. J. Watson

haixun@us.ibm.com

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

Abstract
Monitoring multiple streaming sources for collective deci-
sion making presents several challenges. First, streaming
data are often of large volume, fast speed, and highly bursty
nature. Second, it is impossible to of�oad classi�cation de-
cisions to individual data sources, each of which lacks full
knowledge for the decision making. Hence, the central clas-
si�er responsible for decision making may be frequently
overloaded. In this paper, we study intelligent load shedding
for classifying multi-source data. We aim at maximizing
classi�cation quality under resource (CPU and bandwidth)
constraints. We use a Markov model to predict the distribu-
tion of feature values over time. Then, leveraging Bayesian
decision theory, we use Bayes risk analysis to model the
variances among different data sources in their contributions
to the classi�cation quality. We adopt an Expected Obser-
vational Risk criterion to quantify the loss of classi�cation
quality due to load shedding, and propose a Best Feature
First (BFF) algorithm that greedily minimizes such risk. The
effectiveness of the approach proposed is con�rmed by ex-
periments.
1 Introduction
Mining high-speed, large volume data streams introduces
new challenges for resource management [6, 9]. In many
applications, data from multiple sources arrive continuously
at a central processing site, which analyzes the data for
knowledge-based decision making. Under overloaded situ-
ations, policies of load shedding must be developed for in-
coming data streams so that the quality of decision making
is least affected.

Multi-task, Multi-source Stream Classi�cation Con-
sider a central sever that handles n independent classi�cation
tasks, where each task has multiple input streams (Figure 1)1.
Our problem is the following. Suppose that, at a given mo-
ment, the central classi�er, which monitors n × k streams
from n tasks, only has capacity to process m out of the n× k
input streams. Then, which input streams should we pick
to maximize the classi�cation quality? We use the follow-
ing two examples to illustrate situations that give rise to the
problem.

1For presentation simplicity, we assume that every task has k input
streams and each stream provides data on one feature used for classi�cation.
Although, each input stream may in fact contain one or more features in
reality, to which case our method can be easily generalized.

• A security application monitors many locations. At
each location, multiple cameras monitor from different
viewing angles to precisely determine the speed and
direction of moving objects. In this case, data from
different cameras are of the same type but they have
different semantics (different viewing angles).

• In environment monitoring, a central classi�er makes
decisions based on a set of factors, such as temperature,
humidity, etc., each obtained by sensors distributed in a
wireless network. In this case, multiple data sources for
one task contains different types of information.

task1

Central
Classification
Server

.

.

.

source 1

source k

source i

...

...

task j

.

.

.

source 1

source k

source i

...

...

task n

.

.

.

source 1

source k

source i

...

...

classifications results
for task 1, ..., task n

input streams

input streams

Figure 1: Multi-task, Multi-source Stream Classi�cation

An inherent challenge to this problem is that the deci-
sion making cannot be easily of�oaded to each data source,
as classi�cation depends on information from all of the k
sources. On the other hand, in most situations, at any given
time there exist only a small number of events of potential
interest (e.g., a small number of monitored locations have
abnormal activities). This means that, even if m ¿ n × k,
it is still possible to monitor all the tasks and catch all events
of interest, if we know how to intelligently shed loads.

The following factors may have signi�cant implications
on the overall cost of the classi�cation process. i) Cost of
data preprocessing. Raw data from the sources may have
to be preprocessed before classi�cation algorithms can be
applied. (E.g., extracting objects from video frames, which
can be a very costly process.) ii) Cost of data transmission.
Delivering large amount of data from remote sources to the
centralized server may incur considerable cost. iii) Cost of
data collection. Data may be costly to obtain to begin with.

This may limit the sampling rate of a sensor, or its on-line
time due to energy conservation concerns.

As a concrete example, the central server in the above
security application may have to perform a two-step proce-
dure: a) the server observes the video stream, i.e., receives
the stream from the network, parses video frame images to
determine the composition and location of objects, which has
a very high computation cost in transmission and parsing. b)
the server runs a classi�cation algorithm on the interpreted
image to determine potential security risk.

When any of the above data acquiring/observation costs
are the dominant factors in the process, it becomes worth-
while to pay a reasonable cost to optimize load-shedding.

State-of-the-Art Approaches None of the existing so-
lutions fully address challenges associated with our problem.
• Randomly shedding load

Dropping data indiscriminately and randomly [7, 2, 1]
may lead to degradation of classi�cation quality, as not
all incoming data contribute equally to the quality.

• Solving the special case of k = 1
LoadStar [4] assumes that each classi�cation task has
only one data source (k = 1). The load shedding
decisions are made on a task-by-task basis, and it does
not consider that different features of the same task may
contribute differently to the overall quality. In fact for
k = 1, we can safely of�oad load shedding decisions to
data sources, which already have complete information.

Observations We introduce a quality-aware load shed-
ding mechanism based on the following observations.

1. Streaming data often exhibit strong temporal-locality
(e.g., videos showing objects' movement over time).
This property enables us to build a model to predict the
content of the next incoming data.

2. At a given time, multiple sources (features) of a task
may have different degrees of impact on the classi�ca-
tion result. For example, an approaching object may
be caught by a camera at one angle much earlier than
other angles. Therefore, we should choose to observe
features contributing the most to accuracy.

3. In the Bayesian decision theory, Bayes Risk is used to
measure the quality of classi�cation, and prevent errors
that are most costly for particular applications [5] (e.g.,
false alarms in a security application is usually more
acceptable than missing alarms). We argue that the
load-shedder for the classi�er must try to prevent the
same type of errors. We show that the optimal guideline
for load-shedding is limited to a part of the Bayes Risk
that is caused solely by the lack of data observation,
which we term the Observational Risk.

Contributions. To the best of our knowledge, this is the
�rst report that studies load shedding for the general multi-
source stream classi�cation problem. Our paper makes
the following contributions. (a) We propose feature-based
load shedding using Observational Risk as the guideline.
(b) We give a complete analysis of the Bayes risk and a
novel algorithm BFF that greedily minimizes the expected

Observational Risk on a feature-by-feature basis. (c) We
present experiments data to show the effectiveness of our
algorithms.

2 Problem Analysis and the Markov Model
Consider classi�cation tasks that monitor two data sources
(i.e., two features) X1 and X2; therefore, their states can be
modeled as points in a two-dimensional feature space. In
Figure 2, we show three such tasks at time t, namely, A(t),
B(t), and C(t). The feature space is divided into two classes
� inside and outside the shaded area.

A(t)

C(t)

B(t)

B(t+1)

C(t+1)

A(t+1)

X1

X2

Figure 2: Task Movement in the Feature Space

Let p be the probability distribution of a point's position
at time t + 1. Assuming that the two features X1 and
X2 are independently distributed as normal distributions,
the position of a point at time t + 1 is within an elliptical
boundary with high probability. Then we can draw the
following conclusions based on p, which will be formalized
in Section 3.

1. Different tasks should be given different priorities. For
example, according to p, no matter where B moves
to, its classi�cation result stay the same with high
con�dence, thus we can safely predict its class label
without any observation. This is not true for A and C.

2. Different features (streams) should be given different
priorities. Intuitively, for task A, observations of feature
X2 is more critical, and for task C, observations of fea-
ture X1 is more critical. In Figure 3(a), we zoom in on
task A. Suppose we can only afford to observe one fea-
ture out of the two. If we observe X2 and get expected
value x2, then the distribution p degenerates into a hori-
zontal line segment in Figure 3(c), representing the con-
ditional distribution p(X1|X2 = x2). The resulted dis-
tribution does not run across the decision boundary �
i.e., with high con�dence no matter what the value of
X2 happens to be, the classi�cation will be the same.
This allows us to make a prediction without observing
X1. However, if we instead choose X1 and get expected
value x1, then the curve for p(X2|X1 = x1), shown in
Figure 3(b), still runs across the decision boundary, and
we are unable to classify A with high con�dence.
Markov Model for Movement in Feature Space As-

suming that a point's location in the feature space at time t+1
is solely dependent on its location at time t, we use a �nite

A(t)

A(t+1)

p(x1, x2)

(a)

A(t)

A(t+1)

(x
1

= obs
1
)

p(x1, x2|x1=obs1)

(b)

A(t)

A(t+1)

(x
2

= obs
2
)

p(x1, x2|x2=obs2)

(c)

Figure 3: Joint and Conditional Distributions

discrete-time Markov chain to model a point's movement as
a stochastic process, in order to learn the distribution p at
time t+1. We also assume that features are independent with
respect to movement, thus we build a Markov model on each
feature (instead of a multivariate Markov model, which may
require a very large transition matrix). More speci�cally, let
X be a feature that has M distinct values (continuous values
are discretized), our goal is to learn a state transition matrix
K of size M × M , where entry Kij is the probability that
feature X will take value j at time t + 1 given X = i at time
t.

The MLE (maximum likelihood estimation) of the tran-
sition matrix K is given by:

K̂ij =
nij∑
k nik

I.e., the fraction of observed transitions from i to j
among transitions from i to k, for all possible k. We use
a �nite sliding window of recent history for this estimation
to accommodate concept drifts in streaming data.

3 Bayes Risk Analysis
In this section, we argue that a portion of the expected Bayes
Risk, which we call the expected Observational Risk, should
be used as the metric for feature-based load shedding.
3.1 The Expected Bayes Risk Let δ(ci|cj) denote the
cost of predicting class ci when the data is really of class
cj . Then, at a given point ~x in the feature space, the risk of
our decision to label ~x as class ci out of K classes is:

(3.1) R(ci|~x) =
K∑

j=1

δ(ci|cj)P (cj |~x)

where P (cj |~x) is the posterior probability that ~x belongs to
class cj . One particular loss function is the zero-one loss
function, which is given by

δ(ci|cj) =
{

0 if i = j
1 if i 6= j

under which, the conditional risk in Eq 3.1 becomes

(3.2) R(ci|~x) = 1− P (ci|~x)

Risk Before Feature Observation Without any obser-
vation, our knowledge about a point's next location in the
feature space is completely speci�ed by distribution p(~x).
Therefore the expected risk for classifying a point ~x as class
ci is:

(3.3) Rbefore(ci) = E~x[R(ci|~x)] =
∫

~x

R(ci|~x)p(~x)d~x

which computes an integration over the elliptical area in
Figure 3(a). Note p(~x) is a shorthand for pt+1(~x), which is
derived from the current distribution and the state transition
matrix K of the Markov model as: pt+1(~x) = pt(~x)K. The
best prediction ck thus minimizes the expected risk:

(3.4) k = argmin
i

Rbefore(ci) = argmin
i

E~x[R(ci|~x)]

Therefore, the expected risk before any observation is
Rbefore(ck), i.e., the risk associated with the best prediction.

Risk After Feature Observation Suppose we observe
xj = obsj , the total risk for labeling this partially observed
data point as class ci becomes2:

Rafter(ci|obsj) = E(~x|xj=obsj)[R(ci|~x)]

=
∫

~x|xj=obsj

R(ci|~x)p(~x|obsj)d~x(3.5)

Clearly, Figure 3(b) and 3(c) correspond to Eq 3.5 with dif-
ferent xj observations, where the resulted risks are integrated
over different areas.

Risk Reduction due to Observation The bene�t of
making an observation of xj is given by the reduction in
the expected Bayes Risk. Suppose after observation the
class that minimizes the risk is c′k, then the expected risk
is Rafter(c′k|obsj), and we have

Rdiff (obsj) = Rbefore(ck)−Rafter(c′k|obsj)(3.6)

Thus, a greedy method would choose the feature that
maximizes Eq 3.6 among all features from all tasks3. There-
fore, the best feature is:

j∗ = argmax
j

Rdiff (obsj)(3.7)

Quality of Feature Observation Eq 3.6 provides a
guideline for feature observation in load shedding. However,
the observed value obsj is unknown at the time of load-
shedding, thus we substitute obsj by the expected value of
the feature, E[xj], as our best guess for the observation. This
leads to the following Quality of Observation (QoO) metric

2Sometimes we use p(~x|obsj) to stand for p(~x|Xj = obsj) for ease of
presentation.

3Note that, the predicted classes before any observation, ck , is task-
dependent. I.e., the Rbefore(ck) should really be Rbefore(ck; taskobsj

),
where observation obsj belongs to taskobsj

. Therefore ck is shared by
all obsj for the same task, but different in different tasks. Same applies to
equation 3.8.

C1 C2

X1

x0 Optimal Risk
Lower-bound

a b

(a) The Optimal Risk Lower-bound of Fea-
ture X1 for time t + 1

C1 C2

X1

E[x1]

Obs
Risk

a b

R(E[x1])

(b) Risk Decomposition and Expected Risk
of Feature X1 for Time t

C1 C2

X2

E[x2]c d

R(E[x2])

(c) Risk Decomposition and Expected Risk
of Feature X2 for Time t

Figure 4: Bayes Risk Decomposition

de�nition, where the quality of making an observation on
feature Xj is conditioned upon its expected value, as follows:

QBayes(Xj)= Rbefore(ck)−Rafter(c′k|E[xj])(3.8)
A generalized metric for making the k-th feature obser-

vation after already having observed k − 1 features can be
derived in a similar manner.

3.2 The Expected Observational Risk There is a pitfall
in directly using the expected Bayes Risk for load shedding,
as shown next.

Dissecting the risk Let p(C1|x) and p(C2|x) be the
posterior distributions of two classes C1 and C2. Without
loss of generality, Figure 4(a) shows the two distributions as
two bell curves. At point x0, we have p(C1|x) = p(C2|x).
Therefore, x0 is the classi�cation boundary of C1 and C2.

At time t+1, if X1 = x1, assuming 0/1 loss, the optimal
risk at x1 is the value of the smaller posterior probability.
(For graph illustration purpose, assume here that, the feature
values of X1 at time t + 1 has a uniform distribution within
range [a, b].) Therefore, the expected optimal risk is the
average of the shaded area in Figure 4(a). This expected
optimal risk cannot be further reduced by improving the
underlying classi�er, or by any other means. In fact, it is the
unavoidable, lowest risk, as it is dictated by the overlapping
nature of the class posterior probabilities.

Then, suppose we need to predict the value of X1 at
time t + 1. Although C1 should have been the optimal class,
if we predict X1 to be any value less than x0, we will instead
classify the task as C2. Then the total Bayes Risk is the
shaded areas in Figure 4(b). Compared with the optimal risk,
the increased portion, which we call the Observational Risk,
is shown as the extra shaded area, which is solely brought
by wrong predictions on X1. By observing the value of a
feature, we can eliminate the Observational Risk associated
with that feature.

The Pitfall We compare X1 in Figure 4(b) and X2 in
Figure 4(c). At time t + 1, X2 has a distribution that is
uniform within [c, d], and is different from that of X1. As
shown in the �gure, we should choose to observe feature X1,
since its area of the Observational Risk is larger. However,

if we use Eq 3.8 in the last section, since R(E[X1]) is much
larger than R(E[X2]), the Bayes Risk reduction likely will
favor X2.

The QObs Metric: Therefore, we modify our Quality
of Observation metric QBayes into QObs, which only mea-
sures the reduction of the expected Observational Risk by
data observation. The general metric of QObs, shown next,
measures the quality of the kth observation xk, after having
already observed a total of k − 1 features. This metric is
conditioned on the feature values we have already observed
so far (obs1, obs2, · · ·, obsk−1), and the expected value of the
feature xk that we are about to observe, as follows:

QObs(Xk) =
∫

~x|obs1,··· ,k−1

R′(ci|~x)p(~x|obs1,··· ,k−1)d~x

−
∫

~x|obs1,··· ,k−1,

xk=E[xk]

R′(c′i|~x)p(~x|obs1,··· ,k−1, E[xk])d~x(3.9)

Here R′(ci|~x) stands for [R(ci|~x)−R(c∗|~x)]: where ci

is the best predicted class based on currently-known data dis-
tribution (by Eq 3.4); and c∗ is the optimal class label at the
particular location ~x, obtained based on the class posterior
distributions. This metric QObs strictly optimizes the por-
tion of the Bayes Risk that is reducible by observation. The
analytic derivation of this metric can be found at [3] and is
omitted here.

4 The Best Feature First (BFF) Algorithm
The Best Feature First (BFF) algorithm (shown in Algorithm
1) is derived based on Eq 3.9. At the beginning of each time
unit we �rst compute the predicted distributions for each
feature using Markov chains, and then repeatedly pick to
observe the best unobserved feature over all tasks that leads
to the largest reduction in expected Observational Risk. By
doing so, we greedily minimize the expected Observational
Risk over all tasks.

Algorithm Cost Analysis The most expensive step in
BFF is to compute the metric Qobs for each feature of
each classi�cation tasks. Suppose there are n tasks with k
dimensions each (therefore there are a total of N = n × k
streams), and out of them we have the capacity to observe m

Algorithm 1 The Best Feature First (BFF) Algorithm
inputs: A total of n classi�cation tasks, where each task Ti has k
streaming data sources(features).
outputs: Decisions δi (i ∈ 1, · · · , n) for each of the n tasks
static variables: For each of the N streams, one vector p(x) for
next distribution, and Markov model K built on data in a sliding
window.

1: Compute the predicted distribution p(x) for each feature x,
based on the previous p(x) value and the Markov model K.

2: Compute the predicted decision δi (i ∈ 1, · · · , n) for each of
the n tasks based p(x) (Equation 3.4).

3: Apply heuristics to prune the set of all features, which results
in candidate feature set Fcand (see text).

4: For all features xj ∈ Fcand, compute QObs(xj) by Eq 3.9
5: For all features xk /∈ Fcand, assign QObs(xk) ← 0

6: observed count ← 0

7: while still data and observed count < Capacity do
8: Pick the unobserved stream xj with the highest QObs(xj)

value across all features from all tasks, and observe its actual
data value. Break ties randomly.

9: Update distribution p(xj) to a unit vector to re�ect the
observation made, and update the decision δi for the task
Ti that stream xj belongs to (Equation 3.4).

10: Update the QObs values for the remaining unobserved
streams belonging to task Ti (Equation 3.9).

11: observed count ← observed count + 1

12: end while
13: Update the Markov model for each stream based on observed

values and data expiration from sliding window.

streams. Before any observation, we will perform a total of
O(N) computation of Qobs metrics. Then after making each
observation, we update metric values for O(k) un-observed
features for the observed task, which makes the total Qobs

update cost to be O(m × k). Therefore, each round we
perform [O(N) + O(m × k)] computations of the Qobs

metric. We apply some heuristics to avoid evaluating the
Qobs of some features. 1) A threshold risk value is adaptively
set, (e.g. the 20 percentile of the non-zero Qobs values
from the last window) to prune low-risk tasks. 2) We prune
features whose Qobs (risk gain) in the last window was below
the threshold, and the risk value of the task has changed very
little. Thus we avoid features whose observation is not likely
to give rise to enough risk gains. Although the worst case is
not affected, these heuristics effectively reduce the amortized
average computational complexity in our experiments.

To compute the Expected Observational Risk we need
to integrate over the entire feature space. To reduce the
computational complexity we use integration by sampling as
validated in [4] and in our own experiments. We omit further
details due to length limitations. This sampling is only
needed once per time unit. Suppose we obtain h samples
on each feature, the total cost of sampling is then O(h×N),
where h is usually a small number (e.g., 10). Maintaining the
Markov models for N features each with M distinct values
has a N ×M ×M space and time complexity.

5 Experimental Evaluation
Our experiment results indicate that the BFF algorithm out-
performs both the random-shedding algorithm and the task-
based shedding algorithm LoadStar [4] on multi-source clas-
si�cation tasks, with a reasonable overhead.

Experiment Setups We use the Na�̈ve Bayesian clas-
si�er and a 0/1 loss function for risk computation, where
the classi�cation error is the percentage of mis-labeled data
points. For the Monte Carlo sampling we use 10 sample
points for each task.

Synthetic Datasets We generate data for 25 classi�ca-
tion tasks each with K features (i.e. K different streaming
inputs per task), thus for a total of 25 ∗K input streams. For
the experiments shown here K is set to 4. Data are gener-
ated for 10000 time units, the �rst 5000 are used for training
and the rest for testing. Due to the independence assump-
tion, the class models on each feature are assigned indepen-
dently. Half of the K features for each task are assigned
with the following class model: p(x|+) ∼ N(0.3, 0.22),
p(x|−) ∼ N(0.7, 0.22), where N(µ, σ2) is Normal Distri-
bution with mean µ and variance σ2. The other half fea-
tures in each task are assigned with: p(x|+) ∼ N(0.7, 0.22),
p(x|−) ∼ N(0.3, 0.22). Then the real class is assigned
based on the joint posterior probability.

For data point movements, we use a random walk
model: xt = xt−1 + ε, where ε ∼ N(0, σ2). Half of
the K features in each task are assigned with a σ value
of 0.3, and the other half are assigned with a σ value of
0.005. Therefore the features in the same task could have
very different movement variances.

Quality of Classi�cation Figure 5 shows the quality
of classi�cation under different load shedding percentages
for different quality metrics. We use random shedding as
the baseline for comparison. The horizontal axis shows the
percentage of load that is shed from observation, and the
vertical axis shows the relative error compared to the error
of random-shedding, as follows:

Erroralgorithm

Errorrandom

We see that the feature-based greedy algorithm utilizing
metric QBayes (line C) performs better than the task-based
load shedding method LoadStar (line B), while the BFF algo-
rithm (line D), which is feature-based and speci�cally target-
ing the Observational Risk, outperforms all other methods.
The BFF algorithm achieves more than 45% improvements
over random load shedding when the amount of shedding is
about 40% to 50%. When the amount of shedding further
increases, the improvement drops as prediction becomes less
accurate.

Similar experiments were also carried out on real-life
datasets for a traf�c-jam prediction application, with the
same conclusions as above [3].

CPU Cost Savings Because of computational over-
head, when we shed x% of data from observation, we ac-
tually achieve a total CPU cost saving that is less than x%.

0 10 20 30 40 50 60 70
0.5

0.6

0.7

0.8

0.9

1.0

1.1

D

A

B

R
el

at
iv

e
C

la
ss

ifi
ca

tio
n

E
rr

or
 (o

ve
r R

an
do

m
-S

he
dd

in
g)

Shedding Percentage

 A - Random Shedding
 B - LoadStar (Task-based)
 C - Optimize Q-Bayes (Feature-based)
 D - BFF (Feature-based, Optimize Q-Obs)

C

Figure 5: Classi�cation Quality with Load Shedding

Therefore, we measure the total CPU time required under
load shedding, and divide it by the total CPU time required
without load-shedding. This ratio is then the effective CPU
time saving achieved by load shedding.

As discussed in Section 1, our algorithm applies to cases
when data observation has high costs. In the experiments we
assign costs c as in CPU time for observing a data source (for
Figure 6, c is 5 msec). This is reasonable in many situations.
For example, to extract human faces from video streams as a
data pre-processing step, using state-of-the-art technology, it
takes 67 msec to recognize faces on a 384x288 image [14].
In comparison, in our experiments it takes about 1 msec to
predict a feature value using the Markov model and then
classify the task.

0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50

60

70

C

A
B

E
ffe

ct
iv

e
C

P
U

 T
im

e
S

av
in

gs
 P

er
ce

nt
ag

e

Data Shedding Percentage

 A - Random Shedding
 B - LoadStar (Task-based)
 C - BFF (Feature-based)

Figure 6: The CPU Cost of Algorithms

Figure 6 shows that LoadStar has an overhead that is
a little higher than that of random shedding, but lower than
BFF. For the BFF algorithm, the CPU savings from the �rst
10% tuple shedding is consumed by the algorithm overhead,
i.e., a 20% tuple shedding roughly achieves a 10% CPU time
saving under this setting.

6 Related Works and Conclusions
LoadStar [4] studies a special case of our problem where ev-
ery task only has one input stream. Load shedding mecha-
nisms has been studied for Data Stream Management Sys-
tems (DSMSs), which generally either employ a random-

dropping mechanism [1, 7, 13], rely on user-provided static
QoS metric [7], or employ feed-back control theory [8].
These methods do not address the quality requirements of
classi�cation tasks. Adapting classi�ers for streaming data
is another related area [15, 16, 10, 11, 12], which usually
studies one-pass incremental algorithms, builds data synop-
sis, or adapts classi�ers to concept-drifts. Our work instead
focuses on intelligently dropping, not approximating, input
data under overloaded conditions.

In this paper, we adopt a Bayes Risk based approach
to optimize the multi-source classi�cation problem in the
presence of limited resources. We introduce the notion of
Observational Risk as the proper risk measure for feature-
based load shedding, and propose the Best Feature First
(BFF) algorithm to greedily minimize this risk. Experiments
in both synthetic data and real-life data [3] con�rms the
effectiveness of our algorithm.

References

[1] B. Babcock, M. Datar, and R. Motwani. Load shedding
techniques for data stream systems, 2003.

[2] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load
shedding for aggregation queries over data streams. In ICDE,
2004.

[3] Yijian Bai, Haixun Wang, and Carlo Zaniolo. Load shedding
in classifying multi-source streaming data: A Bayes Risk ap-
proach. Technical Report TR060027, UCLA CS Department,
2006.

[4] Yun Chi, Philip S. Yu, Haixun Wang, and Richard Muntz.
Loadstar: A load shedding scheme for classifying data
streams. In SIAM DM, 2005.

[5] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classi�cation.
Wiley-Interscience Publication, 2000.

[6] Mohamed M. Gaber et. al. Mining data streams: a review.
SIGMOD Rec., 34(2), 2005.

[7] N. Tatbul et. al. Load shedding in a data stream manager. In
VLDB, 2003.

[8] Yi-Cheng Tu et. al. Control-based quality adaptation in data
stream management systems. In DEXA, 2005.

[9] Lukasz Golab and M. Tamer Özsu. Issues in data stream
management. ACM SIGMOD Record, 32(2):5�14, 2003.

[10] Sudipto Guha and Nick Koudas. Approximating a data stream
for querying and estimation: Algorithms and performance
evaluation. ICDE, 2002.

[11] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining
time-changing data streams. In KDD, 2001.

[12] Rouming Jin and Gagan Agrawal. Ef�cient decision tree
construction on streaming data. In KDD, 2003.

[13] R. Motwani, J. Widom, A. Arasu, B. Babcock, M. Datar
S. Babu, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, approximation, and resource management
in a data stream management system.

[14] Paul Viola and Michael J. Jones. Robust real-time face
detection. Int. J. Comput. Vision, 57(2):137�154, 2004.

[15] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining
concept-drifting data streams using ensemble classi�ers. In
SIGKDD, 2003.

[16] Haixun Wang, Jian Yin, Jian Pei, Philip S. Yu, and Jeffrey
X. Yu. Suppressing Model Over�tting in Mining Concept-
Drifting Data Streams. In SIGKDD, 2006.

