
Efficiently Answering Reachability Queries on Very Large
Directed Graphs

Ruoming Jin† Yang Xiang†

† Department of Computer Science
Kent State University, Kent, OH, USA
{jin,yxiang,nruan}@cs.kent.edu

Ning Ruan† Haixun Wang‡

‡ IBM T.J. Watson Research
Hawthorne, NY, USA

haixun@us.ibm.com

ABSTRACT
Efficiently processing queries against very large graphs is
an important research topic largely driven by emerging real
world applications, as diverse as XML databases, GIS, web
mining, social network analysis, ontologies, and bioinformat-
ics. In particular, graph reachability has attracted a lot of
research attention as reachability queries are not only com-
mon on graph databases, but they also serve as fundamental
operations for many other graph queries. The main idea be-
hind answering reachability queries in graphs is to build in-
dices based on reachability labels. Essentially, each vertex in
the graph is assigned with certain labels such that the reach-
ability between any two vertices can be determined by their
labels. Several approaches have been proposed for building
these reachability labels; among them are interval labeling
(tree cover) and 2-hop labeling. However, due to the large
number of vertices in many real world graphs (some graphs
can easily contain millions of vertices), the computational
cost and (index) size of the labels using existing methods
would prove too expensive to be practical. In this paper,
we introduce a novel graph structure, referred to as path-
tree, to help labeling very large graphs. The path-tree cover
is a spanning subgraph of G in a tree shape. We demon-
strate both analytically and empirically the effectiveness of
our new approaches.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications—
graph indexing and querying

General Terms
Performance

Keywords
Graph indexing, Reachability queries, Transitive closure,
Path-tree cover, Maximal directed spanning tree

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1. INTRODUCTION
Ubiquitous graph data coupled with advances in graph an-

alyzing techniques are pushing the database community to
pay more attention to graph databases. Efficiently man-
aging and answering queries against very large graphs is
becoming an increasingly important research topic driven
by many emerging real world applications: XML databases,
GIS, web mining, social network analysis, ontologies, and
bioinformatics, to name a few.

Among them, graph reachability queries have attracted a
lot of research attention. Given two vertices u and v in a
directed graph, a reachability query asks if there is a path
from u to v. Graph reachability is one of the most common
queries in a graph database. In many other applications
where graphs are used as the basic data structure (e.g., XML
data management), it is also one of the fundamental opera-
tions. Thus, efficient processing of reachability queries is a
critical issue in graph databases.

1.1 Applications
Reachability queries are very important for many XML

databases. Typical XML documents are tree structures.
In such cases, the reachability query simply corresponds
to ancestor-descendant search (“//”). However, with the
widespread usage of ID and IDREF attributes, which rep-
resent relationships unaccounted for by a strict tree struc-
ture, it is sometimes more appropriate to represent the XML
documents as directed graphs. Queries on such data often
invoke a reachability query. For instance, in bibliographic
data which contains a paper citation network, such as in
Citeseer, we may ask if author A is influenced by paper
B, which can be represented as a simple path expression
//B//A. A typical way of processing this query is to obtain
(possibly through some index on elements) elements A and
B and then test if author A is reachable from paper B in
the XML graph. Clearly, it is crucial to provide efficient
support for reachability testing due to its importance for
complex XML queries.

Querying ontologies is becoming increasingly important as
many large domain ontologies are being constructed. One of
the most well-known ontologies is the gene ontology (GO) 1.
GO can be represented as a directed acyclic graph (DAG)
in which nodes are concepts (vocabulary terms) and edges
are relationships (is-a or part-of). It provides a controlled
vocabulary of terms to describe a gene product, e.g., proteins
or RNA, in any organism. For instance, we may query if a
certain protein is related to a certain biological process or

1http://www.geneontology.org

has a certain molecular function. In the simple case, this
can be transformed into a reachability query on two vertices
over the GO DAG. As a protein can directly associate with
several vertices in the DAG, the entire query process may
actually invoke several reachability queries.

Recent advances in system biology have amassed a large
amount of graph data, e.g., various kinds of biological net-
works: gene regulatory, protein-protein interaction, signal
transduction, metabolic, etc. Many databases are being
constructed to maintain these data. Biology and bioinfor-
matics are actually becoming a key driving force for graph
databases. Here again, reachability is one of the fundamen-
tal queries frequently used. For instance, we may ask if one
gene is (indirectly) regulated by another gene, or if there is
a biological pathway between two proteins. Biological net-
works may soon reach sizes that require improvements to
existing reachability query techniques.

1.2 Prior Work
In order to tell whether a vertex u can reach another ver-

tex v in a directed graph G = (V, E), we can use two “ex-
treme” approaches. The first approach traverses the graph
(by DFS or BFS), which will take O(n + m) time, where
n = |V | (number of vertices) and m = |E| (number of
edges). This is apparently too slow for large graphs. The
other approach precomputes the transitive closure of G, i.e.,
it records the reachability between any pair of vertices in ad-
vance. While this approach can answer reachability queries
in O(1) time, the computation of transitive closure has com-
plexity of O(mn) [14] and the storage cost is O(n2). Both
are unacceptable for large graphs. Existing research has
been trying to find good ways to reduce the precomputation
time and storage cost with reasonable answering time.

A key idea which has been explored in existing research is
to utilize simpler graph structures, such as chains or trees,
in the original graph to compute and compress the transitive
closure and/or help with reachability answering.

Chain Decomposition Approach. Chains are the first
simple graph structure which has been studied in both graph
theory and database literature to improve the efficiency of
the transitive closure computation [14] and to compress the
transitive closure matrix [11]. The basic idea of chain de-
composition is as follows: the DAG is partitioned into sev-
eral pair-wise disjoint chains (one vertex appears in one and
only one chain). Each vertex in the graph is assigned a chain
number and its sequence number in the chain. For any ver-
tex v and any chain c, we record at most one vertex u such
that u is the smallest vertex (in terms of u’s sequence num-
ber) on chain c that is reachable from v. To tell if any vertex
x reaches any vertex y, we only need to check if x reaches
any vertex y′ in y’s chain and y′ has a smaller sequence
number than y.

Currently, Simon’s algorithm [14], which uses chain de-
composition to compute the transitive closure, has worst
case complexity O(k· ered), where k is width (the total num-
ber of chains) of the chain decomposition and ered is the
number of edges in the transitive reduction of the DAG G
(the transitive reduction of G is the smallest subgraph of
G which has the same transitive closure as G, ered ≤ e).
Jagadish et al. [11] applied chain decomposition to reduce
the size of a transitive closure matrix. It finds the minimal
number of chains from G by transforming the problem to

an equivalent network flow problem, which can be solved in
O(n3), where n is the number of vertices in DAG G. Sev-
eral heuristic algorithms have been proposed to reduce the
computational cost for chain decomposition.

Even though chain decomposition can help with compress-
ing the transitive closure, its compression rate is limited by
the fact that each node can have no more than one immedi-
ate successor. In many applications, even though the graphs
are rather sparse, each node can have multiple immediate
successors, and the chain decomposition can consider only
at most one of them.

Tree Cover Approach. Instead of using chains, Agrawal
et al. use a (spanning) tree to “cover” the graph and com-
press the transitive closure matrix. They show that the tree
cover can beat the best chain decomposition [1]. The pro-
posed algorithm finds the best tree cover that can maximally
compress the transitive closure. The cost of such a pro-
cedure, however, is equivalent to computing the transitive
closure.

The idea of tree cover is based on interval labeling. Given
a tree, we assign each vertex a pair of numbers (an interval).
If vertex u can reach vertex v, then the interval of u contains
the interval of v. The interval can be obtained by performing
a postorder traversal of the tree. Each vertex v is associated
with an interval (i, j), where j is the postorder number of
vertex v and i is the smallest postorder number among its
descendants (each vertex is a descendant of itself).

Assume we have found a tree cover (a spanning tree) of
the given DAG G, and vertices of G are indexed by their
interval label. Then, for any vertex, we only need to re-
member those nodes that it can reach, but the reachability
is not embodied by the interval labels. Thus, the transi-
tive closure can be compressed. In other words, if u reaches
the root of a subtree, then we only need to record the root
vertex as the interval of any other vertex in the subtree is
contained by that of the root vertex. To answer whether u
can reach v, we will check if the interval of v is contained by
any interval associated with the vertices we have recorded
for u.

Other Variants of Tree Covers (Dual-Labeling, La-
bel+SSPI, and GRIPP). Several recent studies try to
address the deficiency of the tree cover approach by Agrawal
et al. Wang et al. [16] develop the Dual-Labeling approach
which tries to improve the query time and index size for the
sparse graph, as the original tree cover would cost O(n) and
O(n2), respectively. For a very sparse graph, they claim the
number of non-tree edges t is much smaller than n (t << n).
Their approaches can reduce the index size to O(n+ t2) and
achieve constant query answering time. Their major idea
is to build a transitive link matrix, which can be thought
of as the transitive closure for the non-tree edges. Basi-
cally, each non-tree edge is represented as a vertex and a
pair of them is linked if the starting of one edge v can be
reached by the end of another edge u through the interval
index (v is u’s descendant in the tree cover). They develop
approaches to utilize this matrix to answer the reachability
query with constant time. In addition, the tree generated in
dual-labeling is different from the optimal tree cover, as here
the goal is to minimize the number of non-tree edges. This
is essentially equivalent to the transitive reduction computa-
tion which has proved to be as costly as the transitive closure

computation. Thus, their approach (including the transitive
reduction) requires an additional O(nm) construction time
if non-tree edges should be minimized. Clearly, the major
issue of this approach is that it depends heavily on the num-
ber of non-tree edges. If t > n or mred ≥ 2n, this approach
will not help with the computation of transitive closure, or
compress the index size.

Label+SSPI [2] and GRIPP [15] aim to minimize the in-
dex construction time and index size. They achieve O(m+n)
index construction time and O(m + n) index size. How-
ever, this is at the sacrifice of the query time, which will
cost O(m − n). Both algorithms start by extracting a tree
cover. Label+SSPI utilizes pre- and post-order labeling for
a spanning tree and an additional data structure for storing
non-tree edges. GRIPP builds the cover using a depth-first
search traversal, and each vertex which has multiple incom-
ing edges will be duplicated accordingly in the tree cover.
In some sense, their non-tree edges are recorded as non-tree
vertex instances in the tree cover. To answer a query, both
of them will deploy an online search over the index to see if
u can reach v. GRIPP has developed a couple of heuristics
which utilize the interval property to speed up the search
process.

2-HOP Labeling. The 2-hop labeling method proposed
by Cohen et al. [5] represents a quite different approach. In-
tuitively, it tries to identify a subset of vertices Vs in the
graph which best capture the connectivity information of
the DAG. Then, for each vertex v in the DAG, we record a
list of vertices in Vs which can reach v, denoted as Lin(v),
and a list of vertices in Vs which v can reach, denoted as
Lout(v). These two sets record all the necessary information
to infer the reachability of any pair of vertices u and v, i.e., if
u→ v, then Lout(v)∩Lin(v) 6= ∅, and vice versa. For a given
labeling, the index size is I =

P

v∈V |Lin(v)| + |Lout(v)|.
They propose an approximate (greedy) algorithm based on
set-covering which can produce a 2-hop cover with size no
larger than the minimum possible 2-hop cover by a loga-
rithmic factor. The minimum 2-hop cover is conjectured to
be Õ(nm1/2). However, their original algorithm will require
computing the transitive closure first with an O(n4) time
complexity to find the good 2-hop cover.

Recently, several approaches have been proposed to reduce
the construction time of 2-hop. Schenkel et al. propose the
HOPI algorithm, which applies a divide-and-conquer strat-
egy to compute 2-hop labeling [13]. They reduce the 2-
hop labeling complexity from O(n4) to O(n3), which is still
very expensive for large graphs. Cheng et al. [3] propose
a geometric-based algorithm to produce a 2-hop labeling.
Their algorithm does not require the computation of tran-
sitive closure, but it does not produce the approximation
bound of the labeling size which is produced by Cohen’s
approach.

1m is the number of edges and O(n3) if using Floyd-Warshall
algorithm [6]
2k is the width of chain decomposition; Query time can be
improved to O(log k) (assuming binary search) and construc-
tion time becomes O(mn+n2 log n), which includes the cost
of sorting.
3Query time can be improved to O(log n) and construction
time becomes O(mn + n2 log n).
4The index size is still a conjecture.
5It requires an additional O(nm) construction time if the

Query time Construction time Index size
Transitive Closure O(1) O(nm)1 O(n2)
Opt. Chain Cover2 O(k) O(nm) O(nk)
Opt. Tree Cover 3 O(n) O(nm) O(n2)
2-Hop4 Õ(m1/2) O(n4) Õ(nm1/2)

HOPI4 Õ(m1/2) O(n3) Õ(nm1/2)
Dual Labeling5 O(1) O(n + m + t3) O(n + t2)
Labeling+SSPI O(m − n) O(n + m) O(n + m)
GRIPP O(m − n) O(n + m) O(n + m)

Table 1: Complexity comparison

1.3 Our Contribution
In Table 1 we show the indexing and querying complexity

of different reachability approaches. Throughout the above
comparison and several existing studies [15, 16, 13], we can
see that even though the 2-hop approach is theoretically ap-
pealing, it is rather difficult to apply it on very large graphs
due to its computational cost. At the same time, as most
of the large graph is rather sparse, the tree-based approach
seems to provide a good starting point to compress transi-
tive closure and to answer reachability queries. Most of the
recent studies try to improve different aspects of the tree-
based approach [1, 16, 2, 15]. Since we can effectively trans-
form any directed graph into a DAG by contracting strongly
connected components into vertices and utilizing the DAG
to answer the reachability query, we will only focus on DAG
for the rest of the paper.

Our study is motivated by a list of challenging issues which
tree-based approaches do not adequately address. First of
all, the computational cost of finding a good tree cover can
be expensive. For instance, it costs O(mn) to extract a
tree cover with Agrawal’s optimal tree cover [1] and Wang’s
Dual-labeling tree [16]. Second, the tree cover cannot rep-
resent some common types of DAGs, for instance, the Grid
type of DAG [13], where each vertex in the graph links to its
right and upper corners. For a k×k grid, the tree cover can
maximally cover half of the edges and the compressed tran-
sitive closure is almost as big as the original one. We believe
the difficulty here is that the strict tree structures are too
limited to express many different types of DAGs even when
they are very sparse. From another perspective, most of
the existing methods which utilize the tree cover are greatly
affected by how many edges are left uncovered.

Driven by these challenges, in this paper, we propose a
novel graph structure, referred to as path-tree, to cover a
DAG. It creates a tree structure where each node in the
tree represents a path in the original graph. This poten-
tially doubles our capability to cover DAGs. Given that
many real world graphs are very sparse, e.g., the number
of edges is no more than 2 times of the number of vertices,
the path-tree provides us a better tool to cover the DAG.
In addition, we develop a labeling scheme where each label
has only 3 elements in the path-tree to answer a reacha-
bility query. We show that a good path-tree cover can be
constructed in O(m + n log n) time. Theoretically, we prove
that the path-tree cover can always perform the compres-
sion of transitive closure better than or equal to the optimal
tree cover approaches and chain decomposition approaches.
Finally, we note that our approach can be combined with
existing methods to handle non-path-tree edges. We have

number of non-tree edges should be minimized.

performed a detailed experimental evaluation on both real
and synthetic datasets. Our results show that the path-tree
cover can significantly reduce the transitive closure size and
improve query answering time.

The rest of the paper is organized as follows. In Section 2,
we introduce the path-tree concept and an algorithm to con-
struct a path-tree from the DAG. In Section 3, we investigate
several optimality questions related to path-tree cover. In
Section 4, we present the experimental results. We conclude
in Section 5.

2. PATH-TREE COVER FOR REACHABIL-
ITY QUERY

We propose to use a novel graph structure, Path-Tree, to
cover a DAG G. The path-tree cover is a spanning subgraph
of G in a tree shape. Under a labeling scheme we devise for
the path-tree cover wherein each vertex is labeled with a 3-
tuple, we can answer reachability queries in O(1) time. We
also show that a good path-tree cover can be extracted from
G to help reduce the size of G’s transitive closure.

Below, Section 2.1 defines notations used in this paper.
Section 2.2 describes how to partition a DAG into paths.
Using this partitioning, we define the path-pair subgraph of
G and reveal a nice structure of this subgraph (Section 2.3).
We then discuss how to extract a good path-tree cover from
G (Section 2.4). We present the labeling schema for the
path-tree cover in Section 2.5. Finally, we show how the
path-tree cover can be applied to compress the transitive
closure of G in Section 2.6.

2.1 Notations
Let G = (V, E) be a directed acyclic graph (DAG), where

V = {1, 2, · · · , n} is the vertex set, and E ⊆ V × V is the
edge set. We use (v, w) to denote the edge from vertex v to
vertex w, and we use (v0, v1, · · · , vp) to denote a path from
vertex v0 to vertex vp, where (vi, vi+1) is an edge (0 ≤ i ≤
p − 1). Because G is acyclic, all vertices in a path must be
pairwise distinct. We say vertex v is reachable from vertex
u (denoted as u→ v) if there is a path starting from u and
ending at v.

For a vertex v, we refer to all edges that start from v as
outgoing edges of v, and all edges ending at v as incoming
edges of v. The predecessor set of vertex v, denoted as S(v),
is the set of all vertices that can reach v, and the successor
set of vertex v, denoted as R(v), is the set of all vertices
that v can reach. The successor set of v is also called the
transitive closure of v. The transitive closure of DAG G is
the directed graph where there is a direct edge from each
vertex v to any vertex in its successor set.

In addition, we say Gs = (Vs, Es) is a subgraph of G =
(V, E) if Vs ⊆ V and Es ⊆ E∩ (Vs×Vs). We denote Gs as a
spanning subgraph of G if it covers all the vertices of G, i.e.,
Vs = V . A tree T is a special DAG where each vertex has
only one incoming edge (except for the root vertex, which
does not have any incoming edge). A forest (or branching)
is a union of multiple trees. A forest can be converted into
a tree by simply adding a virtual vertex with an edge to the
roots of each individual tree. To simplify our discussion, we
will use trees to refer to both trees and forests.

In this paper, we introduce a novel graph structure called
path-tree cover (or simply path-tree). A path-tree cover for
G, denoted as G[T] = (V, E′, T), is a spanning subgraph

(a) (b)

Figure 1: Path-Decomposition for a DAG

of G and has a tree-like shape which is described by tree
T = (VT , ET): Each vertex v of G is uniquely mapped to
a single vertex in T , denoted as f(v) ∈ VT , and each edge
(u, v) in E′ is uniquely mapped to either a single edge in T ,
(f(u), f(v)) ∈ ET , or a single vertex in T .

2.2 Path-Decomposition of DAG
Let P1, P2 be two paths of G. We use P1 ∩ P2 to denote

the set of vertices that appear in both paths, and we use
P1 ∪ P2 to denote the set of vertices that appear in at least
one of the two paths. We define graph partitions based on
the above terminology.

Definition 1. Let G = (V, E) be a DAG. We say a par-
tition P1, · · · , Pk of V is a path-decomposition of G if and
only if P1 ∪ · · · ∪ Pk = V , and Pi ∩ Pj = ∅ for any i 6= j.
We also refer to k as the width of the decomposition.

As an example, Figure 1(b) represents a partition of graph
G in Figure 1(a). The path decomposition contains four
paths P1 = {1, 3, 6, 13, 14, 15}, P2 = {2, 4, 7, 10, 11}, P3 =
{5, 8} and P4 = {9, 12}.

Based on the partition, we can identify each vertex v by a
pair of IDs: (pid, sid), where pid is the ID of the path vertex
v belongs to, and sid is v’s relative order on that path. For
instance, vertex 3 in G shown in Figure 1(b) is identified by
(1, 2). For two vertices u and v in path Pi, we use u � v to
denote u precedes v (or u = v) in path Pi:

u � v ⇐⇒ u.sid ≤ v.sid and u, v ∈ Pi

NOTE: A simple path-decomposition algorithm is given
by [14]. It can be described briefly as follows: first, we per-
form a topological sort of the DAG. Then, we extract paths
from the DAG as follows. We find v, the smallest vertex
(in the ascending order of the topological sort) in the graph
and add it to the path. We then find v′, such that v′ is
the smallest vertex in the graph such that there is an edge
from v to v′. In other words, we repeatedly add the smallest
nodes to the latest extracted vertex until the path could not
be extended (the vertex added last has no out-going edges).
Then, we remove the entire path (including the edges con-
necting to it) from the DAG and extract another path. The
decomposition is complete when the DAG is empty.

2.3 Path Subgraph and Minimal Equivalent
Edge Set

Let us consider the relationships between two paths. We
use Pi → Pj to denote the subgraph of G consisting of i) path

Pi, ii) path Pj , and iii) EPi→Pj
, which is the set of edges

from vertices on path Pi to vertices on path Pj . For instance,
EP1→P2

= {(1, 4), (1, 7), (3, 4), (3, 7), (13, 11)} is the set of
edges from vertices in P1 to vertices in P2. We say subgraph
Pi → Pj is connected if EPi→Pj

is not empty.
Given a vertex u in path Pi, we want to find all vertices

in path Pj that are reachable from u (through paths in sub-
graph Pi → Pj only). It turns out that we only need to
know one vertex – the smallest (with regard to sequence id)
vertex on path Pj reachable from u. We denote its sid as
rj(u).

rj(u) = min{v.sid|u→ v and v.pid = j}

Clearly, for any vertex v′ ∈ Pj ,

u→ v′ ⇐⇒ v′.sid ≥ rj(u)

Certain edges in EPi→Pj
can be removed without changing

the reachability between any two vertices in subgraph Pi →
Pj . This is characterized by the following definition.

Definition 2. A set of edges ER
Pi→Pj

⊆ EPi→Pj
is called

the minimal equivalent edge set of EPi→Pj
if removing any

edge from ER
Pi→Pj

changes the reachability of vertices in
Pi → Pj .

As shown in Figure 2(a), {(3, 4), (13, 11)} is the minimal
equivalent edge set for subgraph P1 → P2. In Figure 2(b),
{(7, 6), (10, 13), (11, 14)} is the minimal equivalent edge set
of EP2→P1

={(4, 6), (7, 6), (7, 14), (10, 13), (10, 14), (11, 14),
(11, 15)}. In Figure 2, edges belonging to the minimal equiv-
alent edge set for subgraphs Pi → Pj in G are marked in
bold.

In the following, we introduce a property of the minimal
equivalent edge set that is important to our reachability al-
gorithm.

Definition 3. Let (u, v) and (w, z) be two edges in EPi→Pj
,

where u, w ∈ Pi and v, z ∈ Pj . We say the two edges are
crossing if u � w (i.e., u.sid ≤ w.sid) and v � z (i.e.,
v.sid ≤ z.sid). For instance, (1, 7) and (3, 4) are crossing
in EPi→Pj

. Given a set of edges, if no two edges in the set
are crossing, then we say they are parallel.

Lemma 1. No two edges in any minimal equivalent edge
set of EPi→Pj

are crossing, or equivalently, edges in ER
Pi→Pj

are parallel.

Proof Sketch: This can easily be proved by contradiction.
Suppose (u, v) and (w, z) are crossing in ER

Pi→Pj
. Without

loss of generality, let us assume u � w(u → w) and v �
z(v ← z). Thus, we have u→ w → z → v. Therefore (u, v)
is simply a short cut of u→ v, and dropping (u, v) will not
affect the reachability for Pi → Pj as it can still be inferred
through edge (w, z). 2

After extra edges in EPi→Pj
are removed, the subgraph

Pi → Pj becomes a simple grid-like planar graph where each
node has at most 2 outgoing edges and at most 2 incoming
edges. This nice structure, as we will show later, allows us
to map its vertices to a two-dimensional space and enables
answering reachability queries in constant time.

Lemma 2. The minimal equivalent edge set of EPi→Pj
is

unique for subbgraph Pi → Pj.

Figure 2: Path-Relationship of a DAG

Proof Sketch: We can prove this by contradiction. As-
suming the lemma is not true, then there are two differ-
ent minimal equivalent edge sets of EPi→Pj

, which we call

ER
Pi→Pj

and ER′

Pi→Pj
. We sort edges in each set from low

to high, using vertex sid in Pi and vertex sid in Pj as pri-
mary and secondary keys, respectively. We compare edges
in these two sets in sorted order. Assume uv ∈ ER

Pi→Pj
and

u′v′ ∈ ER′

Pi→Pj
are the first pair of different edges such that

u 6= u′ or v 6= v′. This is a contradiction because it means
either these two sets have different reachability information
or one of the sets is not a minimal equivalent edge set. 2

A simple algorithm that extracts the minimal equivalent
edge set of EPi→Pj

is sketched in Algorithm 1. We order
all the edges from Pi to Pj (EPi→Pj

) by their end vertex
in Pj . Let v′ be the first vertex in Pj which is reachable
from Pi. Let u′ be the last vertex in Pi can reach v′. Then,
we add (u′, v′) into ER

Pi→Pj
and remove all the edges in

EPi→Pj
which start from a vertex in Pi which proceed u′

(or equivalently, which cross edge (u′, v′)). We repeat this
procedure until the edge set EPi→Pj

becomes empty.

Algorithm 1 MinimalEquivalentEdgeSet(Pi,Pj ,EPi→Pj
)

1: ER
Pi→Pj

= ∅

2: while EPi→Pj
6= ∅ do

3: v′ → min({v|(u, v) ∈ EPi→Pj
}) {the first vertex in Pj

that Pi can reach}
4: u′ ← max({u|(u, v′) ∈ EPi→Pj

})

5: ER
Pi→Pj

← ER
Pi→Pj

∪ {(u′, v′)}

6: EPi→Pj
← EPi→Pj

\{(u, v) ∈ EPi→Pj
|u � u′} {Re-

move all edges which cross (u′, v′)}
7: end while
8: return ER

Pi→Pj

2.4 Path-Graph and its Spanning Tree (Path-
Tree)

We create a directed path-graph for DAG G as follows.
Each vertex i in the path-graph correponds to a path Pi in
G. If path Pi connects to Pj in G, we create an edge (i, j)
in the path graph. Let T be a directed spanning tree (or a
forest) of the path-graph. Let G[T] be the subgraph of G
that contains i) all the paths of G, and ii) the minimal edge
sets, ER

Pi→Pj
, for every i, j if edge (i, j) ∈ T . We will show

(a) (b)

Figure 3: (a) Weighted Directed Path-Graph & (b)
Maximal Directed Spanning Tree

that there is a vector labeling for G[T] which can answer
the reachability query for G[T] in constant time. We refer
to G[T] as the path-tree cover for DAG G.

Just like Agrawal et al.’s tree cover [1], in order to utilize
the path-tree cover, we need to “remember” those edges that
are not covered by the path-tree. Ideally, we would like to
minimize the index size, which means we need to minimize
the number of the non-covered edges. Meanwhile, unlike the
tree cover, we want to avoid computing the predecessor set
(computing the predecessor set of each vertex is equivalent to
computing the transitive closure). In the next subsection, we
will investigate how to find the optimal path-tree cover if the
knowledge of predecessor set is available. Here, we introduce
a couple of alternative criteria which can help reduce the
index size without such knowledge.

The first criterion is referred to as MaxEdgeCover. The
main idea is to use the path-tree to cover as many edges in
DAG G as possible. Let t be the remaining edges in DAG G
(edges not covered by the path-tree). As we will show later
in this subsection, t provides an upper-bound for the com-
pression of transitive closure for G, i.e., each vertex needs to
record at most t vertices for answering a reachability query.
Given this, we can simply assign |EPi→Pj

| as the cost for
edge (i, j) in the directed path-graph.

The second criterion, referred to as MinPathIndex, is more
involved. As we discussed in the path-decomposition, each
vertex needs to remember at most one vertex on any other
path to answer a reachability query. Given two paths Pi, Pj ,
and their link set EPi→Pj

, we can quickly compute the index
cost as follows if EPi→Pj

does not include the tree-cover. Let
u be the last vertex in path Pi that can reach path Pj . Let
Pi[→ u] = {v|v ∈ Pi, v � u} be the subsequence of Pi that
ends with vertex u. For instance, in our running example,
vertex 13 is the last vertex in path P1 which can reach path
P2, and P1[→ 13] = {1, 3, 6, 13} (Figure 2). We assign a
weight wPi→Pj

to be the size of Pj [→ u]. In our example,
the weight wP1→P2

= 4. Basically, this weight is the labeling
cost if we have to materialize the reachability information
for path Pi about path Pj . Considering path P1 and P2, we
only need to record vertex 4 in path P2 for vertices 1 and 3
in path P1 and vertex 11 for vertices 6 and 13. Then, we can
answer if any vertex in P2 can be reached from any vertex
in P1. Thus, finding the maximum spanning tree in such
a weighted directed path-graph corresponds to minimizing
the index size by using path labeling schema. Figure 3(a) is
the weighted directed path-graph using the MinPathIndex
criteria.

To reduce the index size for the path-tree cover, we would
like to extract the maximum directed spanning tree (or for-

est). As an example, Figure 3(b) is the maximum directed
spanning tree extracted from the weighted directed path-
graph of Figure 3(a). The Chu-Liu/Edmonds algorithm can
be directly applied to this problem [4, 8]. The fast implemen-
tation that uses the Fibonacci heap requires O(m′ + k log k)
time complexity, where k is the width of
path-decomposition and m′ is the number of directed edges
in the weighted directed path-graph [9]. Clearly, k ≤ n and
m′ ≤ m, m is the number edges in the original DAG.

2.5 Reachability Labeling for Path-Tree Cover
The path-tree is formed after the minimal equivalent edge

sets and maximal directed spanning tree are established. In
this section, we introduce a vector labeling scheme for ver-
tices in the path-tree. The labeling scheme enables us to
answer reachability queries in constant time. We partition
the path-tree into paths, and we call the result a path-path
cover, denoting it as G[P].

We start with a simple scenario. For example, in Figure 4,
we have the path-path: (P4, P2, P1). We map each vertex in
the path-path to a two-dimensional space as follows. First,
all the vertices in each single path have the same path ID,
which we define to be Y . For instance, vertices P4, P2 and
P1 have path ID 1, 2, and 3, respectively.

Algorithm 2 DFSLabel(G[P](V, E), P1 ∪ · · · ∪ Pk)

Parameter: P1 ∪ · · · ∪ Pk is the path-decomposition of G
Parameter: G[P] is represented as linked lists: ∀v ∈ V :

linkedlist(v) records all the immediate neighbors of v.
Let v ∈ Pi. If v is not the last vertex in path Pi, the
first vertex in the linked list is the next vertex of v in the
path

Parameter: Pi � Pj ⇐⇒ i ≤ j
1: N ← |V |
2: for i = 1 to k do
3: v ← Pi[1] {Pi[1] is the first vertex in the path}
4: if v is not visited then
5: DFS(v)
6: end if
7: end for

Procedure DFS(v)
1: visited(v)← TRUE
2: for each v′ ∈ linkedlist(v) do
3: if v′ is not visited then
4: DFS(v′)
5: end if
6: end for
7: X(v)← N {Label vertex v with N}
8: N ← N − 1

Then, we perform a depth-first search (DFS) to assign
the X label for each vertex (The procedure sketch is in Al-
gorithm 2). For labeling purposes, in the linked list for each
vertex, we always put its neighbor of the same path (the
right neighbor, if it exists) ahead of its neighbors of other
paths (the upper neighbor, if it exists). This allows us to
visit the vertices in the same path before any other vertices.
In the DFS search, we will maintain a counter N which
records the number of all vertices in the graph initially (In
our running example, N = 13, see Figure 4). To start the
DFS search, we begin with the first vertex v0 in the first
path. In our example, it is the vertex 9 in path P4. Start-
ing from this vertex, our DFS always tries to visit its right

neighbor and then tries to visit its upper neighbor. For a
given vertex, when we finish visiting all of its neighbors, we
assign this vertex the label N and reduce N by one. Once we
visit all the vertices which can be reached from v0, we start
from the first vertex in the second path if it has not been
visited. We continue this process until all the vertices have
been visited. Note that our labeling procedure bears some
similarity to [12]. However, their procedure can handle only
a specific type of planar graph, while our labeling procedure
handles path-tree graphs which can be non-planar.

Figure 4(a) shows the X label based on the DFS proce-
dure. Figure 4(b) shows the embedding of the path-path in
the two dimensional space based on their X and Y labels.

Lemma 3. Given two vertices u and v in the path-path,
u can reach v if and only if u.X ≤ v.X and u.Y ≤ v.Y (this
is also referred to as u dominates v).

Proof Sketch: First, we prove u → v =⇒ u.X ≤ v.X ∧
u.Y ≤ v.Y . Clearly if u can reach v, then u.Y ≤ v.Y (path-
path property), and DFS traversal will visit u earlier than
v, and only after visiting all v’s neighbor will it return to
u. So, u.X ≤ v.X based on DFS. Second, we prove u.X ≤
v.X ∧ u.Y ≤ v.Y =⇒ u → v. This can be proved by way
of contradiction. Let us assume u can not reach v. Then,
(Case 1:) if u and v are on the same path (u.Y = v.Y),
then u.X > v.X, i.e., we will visit v before we visit u. In
other words, we complete u’s visit before we complete v’s
visit. Thus, u.X > v.X contradicts our assumption. (Case
2:) if u and v are on different paths (u.Y < v.Y), similar to
case 1, we will complete the visit of u before we complete
the visit of v as u can not reach v. So we have u.X > v.X, a
contradiction. Combining both cases 1 and 2, we prove our
result. 2

For the general case, the paths form a tree instead of a
single path. In this case, each vertex will have an additional
interval labeling based on the tree structure. Figure 5(c)
shows the interval labeling of the path-tree in Figure 5(a).
All the vertices on the path share the same interval label for
this path. Besides, the Y label for each vertex is generalized
to be the level of its corresponding path in the tree path,
i.e., the distance from the path to the root (we assume there
is a virtual root connecting all the roots of each tree in the
branching/forest). The X label is similar to the simple path-
path labeling. The only difference is that each vertex can
have more than one upper-neighbor. Besides, we note that
we will traverse the first vertex in each path based on the
path’s level in the path-tree and any of the traversal orders
of the paths in the same level will work for the Y labeling.
Figure 5(a) shows the X label of all the vertices in the path-
tree and Figure 5(b) shows the two dimensional embedding.

Lemma 4. Given two vertices u and v in the path-tree, u
can reach v if and only if 1) u dominates v, i.e., u.X ≤ v.X
and u.Y ≤ v.Y ; and 2) v.I ⊆ u.I, where u.I and v.I are the
interval labels of u and v’s corresponding paths.

Proof Sketch: First, we note that the procedure will main-
tain this fact that if u can reach v, then u.X ≤ v.X. This is
based on the DFS procedure. Assuming u can reach v, then,
there is a path in the tree from u’s path to v’s path. So we
have v.I ⊆ u.I (based on the tree labeling) and u.Y ≤ v.Y .
In addition, if we have v.I ⊆ u.I , then there is a path from
u’s path to v’s path. Then, using the similar argument from

Figure 4: Labeling for Path-Path (A simple case of
Path-Tree)

Lemma 3 we can see that if u.X ≤ v.X then u can reach v.
2

Assuming any interval I has the format [I.begin, I.end],
we have the following theorem:

Theorem 1. A three dimensional vector labeling
(X, I.begin, I.end) is sufficient for answering the reachabil-
ity query for any path-tree.

Proof Sketch: Note that if v.I ⊆ u.I , then v.Y ≥ u.Y .
Thus, we can drop Y ’s label without losing any information.
Thus, for any vertex v, we have v.X (the first dimension)
and v.I (the interval for the last two dimensions). 2

Our labeling algorithm for path-tree is very similar to the
labeling algorithm for path-path. It has two steps:

1. Create tree labeling for the Maximal Directed Span-
ning Tree obtained from weighed directed path-graph
(by Edmonds’ algorithm), as shown in Figure 5(c)

2. Let P L = P L
1 ∪· · ·∪P L

k′ , where P L
i is the set of vertices

(i.e. paths) in level i of the Maximal Directed Span-
ning Tree, which has k′ levels. Call Algorithm 2 with
G[P L](V, E), P L

1 ∪ · · · ∪ P L
k′ .

The overall construction time of the path-tree cover is as
follows. The first step of path-decomposition is O(n + m),
which includes the cost of the topological sort. The second
step of building the weighted directed path-graph is O(m).
The third step of extracting the maximum spanning tree is
O(m′ + k log k), where m′ ≤ m and k ≤ n. The fourth
step of labeling basically utilizes a DFS proceduce which
costs O(m′′ + n), where m′′ is the number of edges in the
path-tree and m′′ ≤ m. Thus, the total construction time
of path-tree cover is O(m + n log n).

Figure 5: Complete Labeling for the Path-Tree

2.6 Transitive Closure Compression and Reach-
ability Query Answering

Edges not included in the path-tree cover can result in
extra reachability which will not be covered by the path-
tree structure. The same problem appears in the tree cover
related approaches.

For example, Dual Labeling and GRIPP utilize a tree as
their first steps; they then try to find novel ways to handle
non-tree edges. Their ideas are in general applicable to deal-
ing with non-path-tree edges as well. From this perspective,
our path-tree cover approach can be looked as being orthog-
onal to these approaches.

To answer a reachability query for the entire DAG, a sim-
ple strategy is to actually construct the transitive closure
for non-path-tree edges in the DAG. The construction time
is O(n + m + t′

3
) and the index size is O(n + t′

2
) according

to Dual Labeling [16], where t′ is the number of non-path-
tree edges. However, as we will see later in theorem 5, if
the path-tree cover approach utilizes the same tree cover as
Dual Labeling for a graph, t′ is guaranteed to be smaller
than t (non-tree edges).

Moreover, if a maximally compressed transitive closure
is desired, the path-tree structure can help us significantly
reduce the transitive size (index size) and its construction
time as well. Let Rc(u) be the compressed set of vertices
we record for u’s transitive closure utilizing the path-tree.
Assume u is a vertex in Pi. To answer a reachability query
for u and v (i.e. if v is reachable from u), we need to test
1) if v is reachable from u based on the path-tree labeling
and if not 2) for each x in Rc(u), whether v is reachable
from x based on the path-tree labeling. We note that Rc(u)
includes at most one vertex from any path and in the worst
case, |Rc(u)| = k, where k is number of paths in the path-
tree. Thus, a query would cost O(k). In Subsection 3.4, we
will introduce a procedure which costs O(log2 k).

Algorithm 3 constructs a maximally compressed transitive
closure for each vertex. The construction time is O(mk)
because for any vertex u, |Rc(u)| ≤ k.

Algorithm 3 CompressTransitiveClosure (G,G[T])

1: VR ← Reversed Topological Order of G {Perform
topological sort of G}

2: N ← |V |
3: for i = 1 to N do
4: Rc(VR[i])← ∅;
5: Let S be the set of immediate successors of VR[i] in

G;
6: for each v ∈ S do
7: for each v′ ∈ Rc(v) ∪ {v} do
8: if VR[i] cannot reach v′ in G[T] then
9: Add v′ into Rc(VR[i]) ;

10: end if
11: end for
12: end for
13: end for

3. THEORETICAL ANALYSIS OF OPTIMAL
PATH-TREE COVER CONSTRUCTION

In this section, we investigate several theoretical questions
related to path-tree cover construction. We show that given
the path-decomposition of DAG G, finding the optimal path-
tree cover of G is equivalent to the problem of finding the
maximum spanning tree of a directed graph. We demon-
strate that the optimal tree cover by Agrawal et al. [1] is a
special case of our problem. In addition, we show that our
path-tree cover can always achieve better compression than
any chain cover or tree cover.

To achieve this, we utilize the predecessor set of each
vertex. But first we note that the computational cost for
computing all of the predecessor sets of a given DAG G is
equivalent to the cost of the transitive closure of G, with
O(nm) time complexity. Thus it may not be applicable to
very large graphs as its computational cost would be pro-
hibitive. It can, however, still be utilized as a starting point
for understanding the potential of path-tree cover, and its
study may help to develop better heuristics to efficiently ex-
tract a good path-tree cover. In addition, these algorithms
might be better suited for other applications if the knowl-
edge of predecessor sets is readily available. Thus, they can
be applied to compress the transitive closure.

We will introduce an optimal query procedure for reach-
ability queries which can achieve O(log2 k) time complexity
in the worst case, where k is the number of paths in the
path-decomposition.

3.1 Optimal Path-Tree Cover with
Path-Decomposition

We first consider the following restricted version of the
optimal path-tree cover problem.
Optimal Path-Tree Cover (OPTC) Problem: Let P =
(P1, · · · , Pk) be a path-decomposition of DAG G, and let
Gs(P) be the family including all the path tree covers of G
which are based on P . The OPTC problem tries to find the
optimal tree cover G[T] ∈ Gs(P), such that it requires mini-
mal index size to compress the transitive closure of G.

To solve this problem, let us first analyze the index size
which will be needed to compress the transitive closure uti-
lizing a path-tree G[T]. Note that Rc(u) is the compressed
set of vertices which vertex u can reach and for compres-
sion purposes, Rc(u) does not include v if 1) u can reach

v through the path-tree G[T] and 2) there is an vertex
x ∈ Rc(u), such that x can reach v through the path-tree
G[T]. Given this, we can define the compressed index size
as

Index cost =
X

u∈V (G)

|Rc(u)|

(We omit the labeling cost for each vertex as it is the same
for any path-tree.) To optimize the index size, we utilize the
following equivalence.

Lemma 5. For any vertex v, let Tpre(v) be the immedi-

ate predecessor of v on the path-tree G[T]. Then, we have

Index cost =
X

v∈V (G)

|S(v)\(
[

x∈Tpre(v)

(S(x) ∪ {x}))|

where S(v) includes all the vertices which can reach vertex
v in DAG G.

Proof Sketch: For vertex v, if v ∈ Rc(u), then
u ∈ S(v)\(

S

x∈Tpre(v)(S(x) ∪ {x})). This can be proved by

contradiction. Assume u 6∈ S(v)\(
S

x∈Tpre(v)(S(x) ∪ {x})).

Then there must exist a vertex w such that u can reach w in
DAG G and w can reach v in the path tree. Then v should
be replaced by w in Rc(u), a contradiction.

For vertex u, if u ∈ S(v)\(
S

x∈Tpre(v)(S(x) ∪ {x})), then

v ∈ Rc(u). This can also be proved by contradiction. As-
sume v 6∈ Rc(u). Then because u ∈ S(v)\(

S

x∈Tpre(v)(S(x)∪

{x})) we conclude u cannot reach v no matter what other
vertices are in Rc(u), a contradiction. Thus, for each vertex

v ∈ Rc(u)⇐⇒ u ∈ S(v)\(
[

x∈Tpre(v)

(S(x) ∪ {x}))

2

Given this, we can solve the OPTC problem by utiliz-
ing the predecessor sets to assign weights to the edges of
the weighted directed path-graph in Subsection 2.4. Thus,
the path-tree which corresponds to the maximum spanning
tree of the weighted directed path-graph optimizes the in-
dex size for the transitive closure. Consider two paths Pi, Pj

and the minimal equivalent edge set ER
Pi,Pj

. For each edge

(u, v) ∈ ER
Pi,Pj

, let v′ be the vertex which is the immediate
predecessor of v in path Pj . Then, we define the predecessor
set of v with respect to u as

Su(v) = (S(u) ∪ {u})\(S(v′) ∪ {v′})

If v is the first vertex in the path Pj , then we define S(v′) =
∅. Given this, we define the weight from path Pi to path Pj

as

wPi→Pj
=

X

(u,v)∈ER
Pi→Pj

|Su(v)|

We refer to such criteria as OptIndex.

Theorem 2. The path-tree cover corresponding to the max-
imum spanning tree from the weighted directed path-graph
defined by OptIndex achieves the minimal index size for the
compressed transitive closure among all the path-trees in Gs(P).

Proof Sketch: We decompose Index cost utilizing the path-
decomposition P = P1 ∪ · · · ∪ · · ·Pk as follows:

Index cost =
X

1≤i≤k

X

v∈Pi

|S(v)\(
[

x∈Tpre(v)

(S(x) ∪ {x}))|

Note that S(v) ⊇ (
S

x∈Tpre(v)(S(x)∪{x})). Then, minimiz-

ing the Index cost is equivalent to maximizing
X

1≤i≤k

X

v∈Pi

|
[

x∈Tpre(v)

(S(x) ∪ {x})|

We can further rewrite it as (vl being the vertex with largest
sid in the path Pi)

X

1≤i≤k

(
X

v∈Pi\{vl}

|S(v) ∪ {v}|+
X

(u,v)∈ER
Pj→Pi

|Su(v)|)

where Pj is the parent path in the path-tree of path Pi.
Since the first half of the sum is the same for the given path
decomposition, we essentially need to maximize

X

1≤i≤k

X

(u,v)∈ER
Pi→Pj

|Su(v)| =
X

1≤i≤k

wPi→Pj

2

Recall that in Agrawal’s optimal tree cover algorithm [1],
to build the tree, for each vertex v in DAG G, essentially
they choose its immediate predecessor u with the maximal
number of predecessors as its parent vertex, i.e.,

|S(u)| ≥ |S(x)|, ∀x ∈ in(v), u ∈ in(v)

Given this, we can easily see that if the path decomposition
treats each vertex in G as an individual path, then we have
the optimal tree cover algorithm from Agrawal et al. [1].

Theorem 3. The optimal tree cover algorithm [1] is a
special case of path-tree construction when each vertex corre-
sponds to an individual path and the weighted directed path-
graph utilizes the OptIndex criteria.

Proof Sketch: Note that for any vertices u and v such that
(u, v) ∈ E(G), then the weight on the edge (u, v) in the
weighted directed path-graph (each path is a single vertex)
is wu,v = |S(u) ∪ {u}|. 2

3.2 Optimal Path-Decomposition
Theorem 2 shows the optimal path-tree cover for the given

path-decomposition. A follow-up question is then how to
choose the path-decomposition which can achieve overall op-
timality. This problem, however, remains open at this point
(undecided between P and NP). Instead, we ask the fol-
lowing question.
Optimal Path-Decomposition (OPD) Problem: As-
suming we utilize only the path-decomposition to compress
the transitive closure (in other words, no cross-path edges),
the OPD problem is to find the optimal path-decomposition
which can maximally compress the transitive closure.

There are clearly cases where the optimal path-decomposition
does not lead to the perfect path-tree that alone can an-
swer all the reachability queries. This nevertheless provides
a good heuristic to choose a good path-decomposition in
the case where the predecessor sets are available. Note that
the OPD problem is different from the chain decomposition
problem in [11], where the goal is to find the minimal width
of the chain decomposition.

We map this problem to the minimal-cost flow problem [10].
We transform the given DAG G into a network GN (referred
to as the flow-network for G) as follows. First, each vertex
v in G is split into two vertices sv and ev, and we insert a
single edge connecting sv to ev. We assign the cost of such

an edge F (sv, ev) to be 0. Then, for an edge (u, v) in G,
we map it to (eu, sv) in GN . The cost of such an edge is
F (eu, sv) = −|S(u)∪{u}|, where S(u) is the predecessor set
of u. Finally, we add a virtual source vertex and a virtual
sink vertex. The virtual source vertex is connected to any
vertex sv in GN with cost 0. Similarly, each vertex ev is con-
nected to the sink vertex with cost being zero. The capacity
of each edge in GN is one (C(x, y) = 1). Thus, each edge
can take maximally one unit of flow, and correspondingly
each vertex can belong to one and only one path.

Let c(x, y) be the amount (0 or 1) of flow over edge (x, y)
in GN . The cost of the flow over the edge is c(x, y)·F (x, y),
where c(x, y) ≤ C(x, y). We would like to find a set of flows
which go through all the vertex-edges (sv, ev) and whose
overall cost is minimal. We can solve it using an algorithm
for the minimum-cost flow problem for the case where the
amount of flow being sent from the source to the sink is
given. Let i-flow be the solution for the minimum-cost flow
problem when the total amount of flow from the source to
the sink is fixed at i units. We can then vary the amount
of flow from 1 to n units and choose the largest one i-flow
which achieves the minimum cost. It is apparent that i-flow
goes through all the vertex-edges (sv, ev).

Theorem 4. Let GN be the flow-network for DAG G.
Let Fk be the minimal cost of the amount of k-flow from the
source to the sink, 1 ≤ k ≤ n. Let i-flow from the source to
the sink minimize all the n-flow, Fi ≤ Fk, 1 ≤ k ≤ n. The
i-flow corresponds to the best index size if we utilize only the
path-decomposition to compress the transitive closure.

Proof Sketch: First, we can prove that for any given i-
flow, where i is an integer, the flow with minimal-cost will
pass each edge either with 1 or 0 (similar to the Integer Flow
property [6]). Basically, the flow can be treated as a binary
flow. In other words, any flow going from the source to the
sink will not split into branches (note that each edge has
only capacity one). Thus, applying Theorem 2, we can see
that the total cost of the flow (multiplied by negative one)
corresponds to the savings for the Index cost

X

1≤i≤k

(
X

v∈Pi\{vl}

|S(v) ∪ {v}|) =
X

(u,v)∈GN

c(u, v)× F (u, v)

where vl is the vertex with largest sid in path Pi. Then,
let i-flow be the one which achieves minimal cost (the most
negative cost) from the source to the sink. Thus, when we
invoke the algorithm which solves the minimal-cost maximal
flow, we will achieve the minimal cost with i-flow. It is
apparent that the i-flow goes through all the vertex-edges
(sv, ev) because i is largest. Thus, we identify the flow and
find our path-decomposition. 2

Note that there are several algorithms which can solve
the minimal-cost maximal-flow problem with different time
complexities. Interested readers can refer to [10] for more
details. Our methods can utilize any of these algorithms.

3.3 Superiority of Path-Tree Cover Approach
In the following, we consider how to build a path-tree

which utilizes the existing chain decomposition or tree cover
(if they are already computed) to achieve better compression
results. Note that both chain decomposition and tree cover
approaches are generally as expensive as the computation of
transitive closure.

A major difference between chain decomposition and path-
decomposition is that each path Pi in the path-decomposition
is a subgraph of G. However, a chain may not be a subgraph
of G. It is a subgraph of the transitive closure. Therefore,
several methods developed by Jagadish actually require the
knowledge of transitive closure [11]. We can easily apply
any chain decomposition into our path-tree framework as
follows. For any chain Ci = (v1, · · · , vk), if (vi, vi+1) is not
an edge in G, then we add (vi, vi+1) into the edge set E(G).
The resulting graph G′ has the same transitive closure as
G. Now, the chain decomposition of G becomes a path
decomposition of G′ and we can then apply the path-tree
construction based on this decomposition.

The path-tree built upon a chain decomposition C will
achieve better compression than C itself (since at least one
cross-path edge can be utilized to compress the transitive
closure; see the formula in Theorem 2) if there is any edge
connecting two chains in C in DAG G. Note that if there
are no edges connecting two chains in G, then both path-tree
and chain decomposition completely represent G and thus
maximally compress G.

For any tree cover, we can also transform it into a path-
decomposition. We extract the first path by taking the
shortest path from the tree cover root to any of its leaves.
After we remove this path, the tree will then break into
several subtrees. We perform the same extraction for each
subtree until each subtree is empty. Thus, we can have the
path-decomposition based on the tree cover. In addition, we
note that there is at most one edge linking two paths.

Given this, we can prove the following theorem.

Theorem 5. For any tree cover, the path-tree cover which
uses the path-decomposition from the tree cover and is built
by OptIndex has an index size lower than or equal to the
index size of the corresponding tree cover.

Proof Sketch: This follows Theorem 2. Further, there is a
path-tree cover which can represent the same shape as the
original tree cover, i.e., if there is an edge in the original
tree cover linking path Pi to Pj , there is a path-tree that
can preserve its path-path relationship by adding this edge
and possibly more edges from path Pi to Pj in DAG G to
the path-tree. 2

3.4 Very Fast Query Processing
Here we describe an efficient query processing procedure

algorithm with O(log2 k) query time, where k is the num-
ber of paths in the path-decomposition. We first build an
interval tree based on the intervals of each vertex in R(u) as
follows (this is slightly different from [7]): Let xmid be the
median of the end points of the intervals. Let u.I.begin and
u.I.end be the starting point and ending point of the inter-
val u.I , respectively. We define the interval tree recursively.
The root node v of the tree stores xmid, such that

Ileft = {u|u.I.end < xmid}

Imid = {u|xmid ∈ u.I}

Iright = {u|u.I.begin > xmid}

Then, the left subtree of v is an interval tree for the set
of Ileft and the right subtree of v is an interval tree for
the set of Iright. We store Imid only once and order it by
u.X (the X label of the vertices in Imid). This is the key
difference between our interval tree and the standard one

from [7]. In addition, when Imid = ∅, the interval tree is
a leaf. Following [7], we can easily construct in O(k log k)
time an interval tree using O(k) storage and depth O(log k).

Algorithm 4 Query(r,v)

1: if r is not a leaf then
2: Perform BinarySearch to find a vertex w on r.Imid

whose w.X is the closest one such that w.X ≤ v.X
3: else
4: return FALSE;
5: end if
6: if v.I ⊆ w.I then
7: return TRUE;
8: end if
9: if v.I.end < r.xmid then

10: Query(r.left,v);
11: else
12: if v.I.begin > r.xmid then
13: Query(r.right,v);
14: end if
15: end if

The query procedure using this interval tree is shown in
Algorithm 4 when u does not reach v through the path-
tree. The complexity of the algorithm is O(log2 k). The
correctness of the Algorithm 4 can be proved as follows.

Lemma 6. For the case where u cannot reach v using only
the path-tree, then Algorithm 4 correctly answer the reacha-
bility query.

Proof Sketch: The key property is that for any two ver-
tices w and w′ in Imid, either w.I ⊆ w′.I or w′.I ⊆ w.I .
This is because the intervals are extracted from the tree
structure, and it is easy to see that:

w.I ∩ w′.I 6= ∅ ⇒ (w.I ⊆ w′.I) ∨ (w′.I ⊆ w.I)

Thus, we can order the intervals based on the inclusion rela-
tionship. Further, if w.I ⊆ w′.I , then we have w.X < w′.X
(Otherwise, we can drop w.I if w.X > w′.X). Following
this, we can see that for any w from Line 2 if w.I does not
include v.I , then no other vertex in Imid can include v.I
with w.X ≤ v.X. 2

4. EXPERIMENTS
In this section, we empirically evaluate our path-tree cover

approach on both real and synthetic datasets. We are par-
ticularly interested in the following two questions:

1. What is the compression rate of the path-tree cover
approach, compared to that of the optimal tree cover
approach?

2. What are the construction time and query time for
the path-tree approach, compared to those of existing
approaches?

All tests were run on an AMD Opteron 2.0GHz machine
with 2GB of main memory, running Linux (Fedora Core 4),
with a 2.6.17 x86 64 kernel. All algorithms are implemented
in C++. Table 2 lists the real graphs we use. Among them,
AgroCyc, Anthra, Ecoo157, HpyCyc, Human,Mtbra, and

VchoCyc are from EcoCyc 2; Xmark and Nasa are XML doc-
uments; and Reactome, aMaze, and KEGG are metabolic
networks provided by Trißl [15]. The first two columns are
the number of vertices and edges in the original graphs, and
the last two columns are the number of vertices and edges
in the DAG after compressing the strongly connected com-
ponents.

Table 2: Real Datasets
Graph Name #V #E DAG #V DAG #E
AgroCyc 13969 17694 12684 13408
aMaze 11877 28700 3710 3600
Anthra 13736 17307 12499 13104
Ecoo157 13800 17308 12620 13350
HpyCyc 5565 8474 4771 5859
Human 40051 43879 38811 39576
Kegg 14271 35170 3617 3908
Mtbrv 10697 13922 9602 10245
Nasa 5704 7942 5605 7735
Reactome 3678 14447 901 846
Vchocyc 10694 14207 9491 10143
Xmark 6483 7654 6080 7028

We apply three different methods: 1) Tree, which corre-
sponds to the optimal tree cover approach by Agrawal [1],
2) PTree-1, which corresponds to the path-tree approach
utilizing optimal tree cover together with OptIndex (Subsec-
tion 3.1), and 3) PTree-2, which corresponds to the path
tree approach described in Section 2 and utilizing the Min-
PathIndex criteria. For each method, we measure three pa-
rameters: compressed transitive closure size, construction
time, and query time. (Here, construction time is the total
processing time of a DAG. As an example, for the path-tree
cover approach, it includes the construction of both the path-
tree cover and the compressed transitive closure.)

Both PTree-1 and PTree-2 use Algorithm 3 to calculate
compressed transitive closures. A query is generated by ran-
domly picking a pair of nodes for a reachability test. We
measure the query time by answering a total of 100, 000
randomly generated reachability queries.

We compare our approaches with only the optimal tree
cover approach because we find it has the best performance
on most of the real datasets. Under Dual-Labeling I and II
[16] (using code provided by its authors), we found the per-
formance on most of our experimental datasets to be worse
than under Agrawal et al.’s tree-cover approach. This is
because Dual-Labeling methods focus on very sparse or very
small graphs with very few non-tree edges. Furthermore, we
believe a comparison with Dual-Labeling may not be fair,
since our implementation of PTree-1, PTree-2 and optimal
tree cover is based on the C++ Standard Template Library,
while the Dual-Labeling code provided by Dual-Labeling au-
thors is based on the C++ Boost libraries. For GRIPP [15],
we found that its query time is too long with our C++ im-
plementation. On average, its query time can be several
orders of magnitude slower than the time of the tree-cover
approach and also our path-tree cover approach. This is pri-
marily because their method focuses on how to implement
index and answer reachability queries in a real database sys-

2http://ecocyc.org/

Table 3: Comparison between Optimal Tree Approach and Path-Tree Approach
Transitive Closure Size Construction Time (in ms) Query Time (in ms)

Tree PTree-1 PTree-2 Tree PTree-1 PTree-2 Tree PTree-1 PTree-2
AgroCyc 13550 962 2133 149.798 224.853 142.311 46.629 10 14.393
aMaze 5178 1571 17274 1062.15 834.697 63.748 19.478 21.529 61.925
Anthra 13155 733 2620 141.108 212.258 143.568 44.958 9.317 16.498
Ecoo 13493 973 3592 151.455 229.29 141.951 46.674 11.224 16.739
HpyCyc 5946 4224 4661 57.378 106.552 71.675 31.539 12.089 15.503
Human 39636 965 2910 446.321 648.005 465.148 70.107 20.008 23.008
Kegg 5121 1703 30344 746.025 1057.11 86.396 17.509 27.282 75.448
Mtbrv 10288 812 3664 111.479 173.382 106.583 40.391 9.81 19.815
Nasa 9162 5063 6670 85.291 111.397 53.139 37.037 16.214 20.771
Reactome 1293 383 1069 17.244 18.189 6.3 17.565 6.467 13.037
VchoCyc 10183 830 2262 109.465 170.714 103.036 40.026 8.999 14.274
Xmark 8237 2356 10614 204.762 247.628 68.358 37.834 17.122 41.549

tem. Thus, we do not compare with GRIPP here because
this comparison may not be fair in our experimental setting.

Real-Life Graphs. Table 3 shows the compressed transi-
tive closure size, the construction time, and the query time.
We can see that PTree-1 consistently has a better compres-
sion rate than the tree approaches do, which confirms our
theoretical analysis in Subsection 3.1. PTree-2 in 9 out of
12 datasets has much better compression rate than the opti-
mal tree cover approach does. Overall, PTree-1 and PTree-2
achieve, respectively, an average of 10 times and 3 times bet-
ter compression rate than the optimal tree cover approach
does. The compressed transitive closure size directly affects
the query time for the reachability queries. This can be
observed in the query time results (PTree-1 and PTree-2,
respectively, are approximately 3 and 2 times as fast as the
optimal tree cover approach at answering the reachability
queries).

For the construction time, we do expect PTree-1 to be
slower than the optimal tree cover approach since it uses the
optimal tree cover as the first step for path-decomposition
(Recall that we extract the paths from the optimal tree).
However, PTree-2 uses less construction time than optimal
tree cover in 9 out of 12 datasets, and on average is 3 times
as fast as the optimal tree cover. This result is generally con-
sistent with our analysis of the theoretical time complexity,
which is O(m + n log n) + O(mk).

Random DAG. We also compare path-tree cover approaches
with the tree cover approach on synthetic DAGs. Here, we
generate a random DAG with average edge density of 2 (i.e.
on average each vertex points to two other vertices), vary-
ing the number of vertices from 10, 000 to 100, 000. Figure 6
shows the compressed transitive closure size of the path-
tree cover approaches (PTree-1 and PTree-2) and optimal
tree cover approach (Tree). Figure 7 and Figure 8 show the
construction time and query time of these three approaches
respectively. Overall, the compressed transitive closure size
of PTree-1 and PTree-2 is approximately 29% and 26%, re-
spectively, of the one from the optimal tree cover.

In Figure 6 and Figure 8, PTree-1 and PTree-2 both per-
form significantly better than the tree cover approach. In
Figure 7, PTree-1 takes longer construction time than the
optimal tree cover because it uses the optimal tree cover as

Figure 6: Transitive Closure Size for Random DAG

Figure 7: Construction Time for Random DAG

Figure 8: Query Time for Random DAG

the first step for path-decomposition. PTree-2 takes shorter
construction time than the optimal tree cover as indicated
by our theoretical analysis.

In the random DAG tests, PTree-2 has slightly smaller
transitive closure size and shorter query time than PTree-
1 does, whereas in the real dataset tests, PTree-1 has the
smaller size and query time. We conjecture this is because
many real datasets have tree-like structures while random
DAGs do not. Therefore, tree cover and PTree-1 fit very
well for these real datasets but less well for random DAGs.
It also suggests that the MinPathIndex criteria may be well
suited for DAGs that lack a tree-like structure.

5. CONCLUSION
In this paper, we introduce a novel path-tree structure

to assist with the compression of transitive closure and an-
swering reachability queries. Our path-tree generalizes the
traditional tree cover approach and can produce a better
compression rate for the transitive closure. We believe our
approach opens up new possibilities for handling reachability
queries on large graphs. Path-tree also has the potential to
integrate with other existing methods, such as Dual-labeling
and GRIPP, to further improve the efficiency of reachability
query processing. In the future, we will develop disk-based
path-tree approaches for reachability queries.

6. ACKNOWLEDGMENTS
The authors would like to thank Silke Trißl for provid-

ing the GRIPP code and datasets, Jeffrey Xu Yu for pro-
viding implementations of various reachability algorithms,
Victor Lee, David Fuhry and Chibuike Muoh for suggesting
manuscript revisions, and the anonymous reviewers for their
very helpful comments.

7. REPEATABILITY ASSESSMENT RESULT
A previous version of the code and results were validated

for repeatability by the repeatability committee; the results
in these conference proceedings reflect a later (improved)
version, and this version has been archived.

Code and data used in the paper are available at
http://www.sigmod.org/codearchive/sigmod2008/

8. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

management of transitive relationships in large data
and knowledge bases. In SIGMOD, pages 253–262,
1989.

[2] Li Chen, Amarnath Gupta, and M. Erdem Kurul.
Stack-based algorithms for pattern matching on dags.
In VLDB ’05: Proceedings of the 31st international
conference on Very large data bases, pages 493–504,
2005.

[3] Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun
Wang, and Philip S. Yu. Fast computation of
reachability labeling for large graphs. In EDBT, pages
961–979, 2006.

[4] Y. J. Chu and T. H. Liu. On the shortest arborescence
of a directed graph. Science Sinica, 14:1396–1400,
1965.

[5] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri
Zwick. Reachability and distance queries via 2-hop
labels. In Proceedings of the 13th annual ACM-SIAM
Symposium on Discrete algorithms, pages 937–946,
2002.

[6] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. McGraw
Hill, 1990.

[7] Mark de Berg, M. van Krefeld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, second edition,
2000.

[8] J. Edmonds. Optimum branchings. J. Research of the
National Bureau of Standards, 71B:233–240, 1967.

[9] H N Gabow, Z Galil, T Spencer, and R E Tarjan.
Efficient algorithms for finding minimum spanning
trees in undirected and directed graphs.
Combinatorica, 6(2):109–122, 1986.

[10] A. V. Goldberg, E. Tardos, and R. E. Tarjan. Network
Flow Algorithms, pages 101–164. Springer Verlag,
1990.

[11] H. V. Jagadish. A compression technique to
materialize transitive closure. ACM Trans. Database
Syst., 15(4):558–598, 1990.

[12] T. Kameda. On the vector representation of the
reachability in planar directed graphs. Information
Processing Letters, 3(3), January 1975.

[13] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An
efficient connection index for complex XML document
collections. In EDBT, 2004.

[14] K. Simon. An improved algorithm for transitive
closure on acyclic digraphs. Theor. Comput. Sci.,
58(1-3):325–346, 1988.

[15] Silke Trißl and Ulf Leser. Fast and practical indexing
and querying of very large graphs. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 845–856,
2007.

[16] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and
Jeffrey Xu Yu. Dual labeling: Answering graph
reachability queries in constant time. In ICDE ’06:
Proceedings of the 22nd International Conference on
Data Engineering (ICDE’06), page 75, 2006.

