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ABSTRACT
An increasing number of enterprises outsource their IT functions
or business processes to third-parties who offer these services with
a lower cost due to the economy of scale. Quality of service has
become a major concern in outsourcing. Most IT services evolve
around data processing, which poses a special requirement on data
and query integrity: the clients must be ensured that query results
returned by the service provider are both correct and complete. Pre-
vious work requires clients to manage data locally to audit the re-
sults sent back by the server, or the server to modify the database
engine for generating authenticated results. In this paper, we intro-
duce a novel integrity audit mechanism that bypasses these costly
requirements. We insert a small amount of records into an out-
sourced database so that the integrity of the system can be effec-
tively audited by analyzing the inserted records in the query results.
We study both randomized and deterministic approaches for gener-
ating the inserted records, as how these records are generated has
significant implications for storage and performance. Furthermore,
we show that our method is provable secure, which means it can
withstand any attacks by an adversary whose computation power
is bounded. Our analytical and empirical results demonstrate the
effectiveness of our method.

1 Introduction
With the advent of reduced telecommunication costs, an increas-
ing number of enterprises outsource their IT functions or business
processes to third-parties. According to a recent survey, IT out-
sourcing is growing at a staggering 79% as companies seek to re-
duce costs and focus on their core competencies. Data processing
service outsourcing is a major component as most of IT functions
evolve around data processing.

Security is essential for outsourced data processing services. Be-
cause a third party service provider may not be trusted or may not
be securely administrated, security properties must be assured at
the infrastructure level. In this paper, we focus on mechanisms that
provide security assurance for database services offered by third
parties.
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Problem Setting In the database outsourcing scenario, the dat-
abase owner stores data at a service provider, and the clients send
queries to the service provider (Figure 1). We assume data and
communication are encrypted, the database system at the service
provider supports query processing over encrypted data, and the
problem of data privacy has been taken care of [5, 17].

Figure 1: System Model

In addition to data privacy, an important security concern in the
database outsourcing paradigm is integrity [12, 13, 16, 9]. When
a client receives a query result from the service provider, he wants
to be assured that the result is both correct and complete, where
correct means that the result must originate in the owner’s data and
has not been tampered with, and complete means that the result
includes all records satisfying the query. The goal of this paper is
to provide a simple and elegant protocol to monitor the integrity of
outsourced database services.

Providing integrity assurance is a new and challenging task. Tra-
ditional DBMSs do not have this issue because in-house data pro-
cessing is always trusted. Current approaches for this problem re-
quire either changes to be made in DBMS kernels, or a significant
subset of the data to be stored locally at the client site. Both of the
approaches are costly, hard to implement, and ineffective at least
in some scenarios. Particularly, a severe challenge is triggered by
a rising trend in mobile computing – more and more clients are
accessing database services from such devices as PDAs and cell
phones, which have limited storage capacity and processing power.
Thus, a protocol for integrity assurance needs to impose little stor-
age or computation overhead in the client side.

Overview of our approach In this paper, we propose a probabilis-
tic integrity audit method. We insert a small number of tuples into
the outsourced database. For a query issued against this augmented
database, there is certain probability that a small amount of the in-
serted tuples is returned with the original data. The integrity of



the system can be effectively monitored by analyzing the inserted
tuples in a reply.

To perform the analysis, the client must know what tuples have
been inserted into the outsourced database. If an inserted tuple that
satisfies the query is absent from the reply, then we know the in-
tegrity is breached; if all the inserted tuples that satisfies the query
does appear in the reply, we can deliver a probabilistic assurance
on query integrity.

We address several challenges to this task. First, in order to know
the set of the inserted tuples to be returned, the client must keep a
copy of the inserted tuples. This requires local data storage and
local query processing. In our approach, we use a deterministic
function to “describe” the inserted data. As the data generated by
the function is encrypted, it is impossible for a service provider to
differentiate the inserted data from any other data in the encrypted
database. As a result, we only need to store the definition of the
function at the client side instead of all the inserted data.

A second challenge is to ensure that our integrity monitoring
scheme is secure. If the adversaries or the untrusted service provider
can tell inserted tuples from original tuples, then our sch-
eme will fail. We must ensure that the query processing process
does not provide the adversaries any information that may lead to
security breach. To this end, we show that our scheme is provable
secure, which means it achieves the highest level of security when
the adversaries are assumed to be computationally bounded.

A third challenge is generality. Previous work has largely fo-
cused on simple selection queries. We show that our scheme pro-
vides integrity check for joins and updates. Overall, our technique
is applicable to a wide range of data processing services including
search engines, storage systems, backup systems, etc. In the paper,
we use database as an example as it illustrates most of features in
our approach.

Paper Organization In Section 2, we review the previous work
related to security in outsourced databases. Section 3 introduces the
background information about query integrity assurance. Section 4
and 5 introduce our scheme for integrity monitoring, and Section
6 shows that it is provable secure. Section 7 extends our scheme
to support advanced queries, and Section 8 studies how to optimize
our scheme. We show empirical results of our approach in Section
9, and conclude in Section 10.

2 Related work
When we outsource database operations to an untrusted service
provider, we face two challenges: data privacy and query integrity.
Much work has been done to protect data privacy; this paper fo-
cuses on protecting query intergrity.

Hacigümüs et. al. [8] first brought up security issues in the sce-
nario of database outsourcing. It focuses on the privacy aspect of
the outsourced database, in particular, efficiency of various encrypt-
ing schemes using both hardware and software encryption. That
work does not consider the problem of data integrity.

The pioneering work on the problem of integrity [6, 12] focuses
on the authentication of the data records, that is, the correctness as-
pect of the integrity. Devanbu et. al. [6] authenticates data records
using the Merkle hash tree [10], which is based on the idea of using
aggregated signature to generate a proof of correctness. Mykle-
tun et. al. [12] discussed and compared several signature methods
which can be utilized in data authentication, and they identified
the problem of completeness, but did not provide a solution. The
Merkle hash tree based work has been extended to handle the com-
pleteness aspect of integrity [6, 9], but we show later in this section
that those methods have some drawbacks in extensibility and effi-
ciency.

Some recent work [13, 9, 16] studied the problem of auditing the
completeness aspect of the integrity. By explicitly assuming an or-
der of the records according to one attribute, Pang et. al.[13] used
an aggregated signature to sign each record with the information
from two neighboring records in the ordered sequence, which en-
sures the result of a simple selection query is continuous by check-
ing the aggregated signature. But it has difficulties in handling
multipoint selection query of which the result tuples occupy a non-
continuous region of the ordered sequence. Besides, it can only
handle a subclass of join operations, the primary key/foreign key
join, because that the result of the join forms a continuous region
of original ordered data can only be assured in this case. Other
work [6, 9] uses Merkle hash tree based methods to audit the com-
pleteness of query results, but since the Merkle hash tree also uses
the aggregated signature computed from an ordered set of records
using one attribute, the same problems in Pang et. al.’s work [13]
exist. Sion [16] introduces a mechanism called the challenge to-
ken and uses it as a probabilistic proof that the server has executed
the query over the entire database. It can handle arbitrary types of
queries including joins and does not assume the underlying data is
ordered. But their scheme cannot detect all malicious attacks, for
instance, when the service provider computes the complete result
but returns part of it for sake of business profit from a competition
rival.

Li et. al. [9] first introduced freshness as an aspect of integrity. In
essence, it checks the integrity of the update operations – whether
update operations are correctly and timely performed by the service
provider so the database is in the freshest state. Li et. al. extended
the scheme of Merkle hash tree by generating a timestamped signa-
ture for the root node of the tree, which is inspired by the work on
certificate validation and revocation [11]. Auditing updates is im-
portant. The aggregated signature chain based methods [13] must
modify signatures of all the records, which is impractical consid-
ering the number of signatures. Sion’s scheme [16] may need to
re-compute all the challenge tokens by retrieving all corresponding
data segments, which may cause significant overhead. Our scheme
is able to audit the freshness of the integrity by inserting a small
number of redundant tuples into the outsourced data and keep a
small data structure at the client side with minimal overhead.

Finally, one significant advantage of our scheme over previous
methods is that all previous methods must modify the DBMS ker-
nel in order to provide proof of integrity (e.g., the aggregated sig-
nature methods [6, 13, 9, 16], and the challenge token mechanism
in Sion’s work [16]). This requirement often renders these methods
impractical to deploy in real life. Our work audits query integrity
without requiring the database engine to perform any special func-
tion beyond query processing, as our integrity check relies on noth-
ing but the query results returned by the DBMS.

3 Preliminaries
We audit query integrity by inserting a small number of fake tuples
into the outsourced database and then analyzing the fake tuples that
show up in the query result. Our approach has three basic needs:
data encryption, data authentication, and tuple authentication (i.e.,
telling fake tuples from real tuples). We describe these preliminar-
ies below.

Data Encryption Data is encrypted to guarantee privacy. But, in
the scenario of database outsourcing, we have an additional require-
ment for the encryption scheme, that is, it must be able to support
queries directly over encrypted data. This topic has been studied
by much recent work. Hacigümüş et. al. [7] provide a mechanism
to execute SQL queries over encrypted data using a special index
structure, but the result is a superset of the final result, which needs



further filtering. Another approach, OPES [1], ensures the encryp-
tion is order preserving, such that range queries can be performed
on the encrypted data directly. OPES is secure as it guarantees that
the distribution of the encrypted data has no correlation with that
of the plain text data.

Our integrity auditing scheme is built on top of OPES. Assume a
dataset T has n attributes and in addition a unique id tid: T{tid, a1,
. . . , an}. Let Ek be the OPES encryption function, with which
we create an encrypted dataset: {Ek(tid), Ek(a1), . . . , Ek(an)}.
Without knowing the key k, it is computationally prohibitive to find
out the plain text ai from Ek(ai). In addition to data privacy, the
encryption scheme also supports query over encrypted data.

Data Authentication For data authentication, we add a special check-
sum or header column ah to the dataset. We compute ah using
Eq 3.1, where ⊕ denotes string concatenation and H is a one-way
hash function.

ah = H(tid⊕ a1 ⊕ a2 ⊕ . . .⊕ an) (3.1)

The one-way hash function H has the following property [2]. It
takes a variable length input string x and converts it into a fixed-
length (e.g., 128 bits) binary sequence H(x). However, it is dif-
ficult to reverse the process, in other words, given a value x′, it
is computationally infeasible for an attacker to find an x such that
H(x) = x′.

It follows that it is computationally infeasible for the attacker
to compute a valid header from the encrypted data, because the
encryption prevents the attacker from knowing the plain text ai,
which is the required input to the one-way hash function. Thus, any
modification to the original record or insertion of foreign records
will not pass header verification. Furthermore, the unique tid will
prevent adversary from inserting duplicate tuples into the dataset.

It is clear that the correctness aspect of query integrity can be
ensured by data authentication. Given a query q, its result Rq is
correct as long as each tuple t ∈ Rq is valid, and t satisfies q. The
major focus of our work is to ensure Rq is complete.

Tuple Authentication We audit query integrity by inserting a sm-
all number of fake tuples into the outsourced database. The client
authenticates a tuple to tell whether it is a fake tuple or a real tuple.
To do this, we use Eq 3.2 to derive the checksum or the header of
a tuple t = (tid, a1, . . . , an).

ah =
{

H(tid⊕ a1 ⊕ . . .⊕ an) t is real
H(tid⊕ a1 ⊕ . . .⊕ an) + 1 t is fake (3.2)

On receiving a result tuple from the service provider, the client
knows it is a real tuple if its header equals to H(tid⊕a1⊕. . .⊕an),
or a fake tuple if its header equals to H(tid⊕ a1 ⊕ . . .⊕ an) + 1.
Otherwise it is an invalid tuple. The server, on the other hand,
cannot tell a fake tuple from a real tuple because of the encryption
and the use of the one-way hash function. Tuple authentication will
not cause any storage overhead because the header is of fixed length
(128 bits), and the computation overhead of Eq 3.2 over Eq 3.1 is
negligible.

4 Randomized Approaches
We introduce an integrity auditing approach based on inserting fake
tuples. In this naı̈ve approach, fake tuples are randomly generated,
and they are stored at the client side. In the next section, we discuss
an advanced approach which avoids storing fake tuples by using a
deterministic function to generate fake tuples. We start our dis-
cussion with queries containing range predicates only, and we will
focus on joins and updates in later sections. The queries we are
concerned with have the following form:

SELECT * FROM T

WHERE T.A BETWEEN a1 AND a2 AND

T.B BETWEEN b1 AND b2 AND . . .

4.1 Method
Given a query Q, the server returns RQ. Assume the client knows
in advance that certain tuples should appear in RQ. Then, if any of
them is absent, we know immediately the server is problematic; if
none of them is absent, we come to a probabilistic conclusion about
the integrity of the server. The question is, what are the tuples the
client knows in advance will appear in RQ?

One naı̈ve approach is the following: we randomly generate a set
of fake tuples, insert them into the outsourced dataset at the server
side, and maintain a copy of them at the client side. When the client
obtains result RQ for query Q from the server, it queries Q against
its own copy of fake tuples, and finds out what are the tuples that
should appear in RQ.

To audit whether all fake tuples covered by Q appear in RQ can
be a costly process, for the client needs to join RQ with its own
copy of fake tuples to get the result. To alleviate the cost, we use
the header column information for each tuple t to easily find out
the total number of fake tuples returned by the server for query Q.

Let Cs(Q) be the set of fake tuples in RQ, and let Cc(Q) be the
tuples among the client’s copy of the fake tuples that satisfy Q. We
have the following conclusion:

THEOREM 1. If |Cs(Q)| = |Cc(Q)|, then Cs(Q) = Cc(Q).

PROOF. Assume to the contrary Cs(Q) 6= Cc(Q). As |Cs(Q)|
= |Cc(Q)|, ∃t ∈ Cs(Q) such that t 6∈ Cc(Q). But t ∈ Cs(Q)
means t is a fake tuple, whose authenticity is guaranteed by the
encryption and the one-way hash function, and since t satisfies Q,
t must appear in Cc(Q).

Theorem 1 enables the client to audit the completeness of RQ

by counting the tuples, which avoids the join operation. Now, if
|Cs(Q)| 6= |Cc(Q)|, we know immediately there is a problem. But
if |Cs(Q)| = |Cc(Q)|, how likely the server is problem-free?

4.2 Probabilistic guarantee
The randomized approach of completeness auditing is a probabilis-
tic approach. We analyze the probability of it being attacked.

As we have mentioned in Section 3, modifying tuple content or
adding new tuples are easily detected through data authentication.
Thus, the only attack is to delete tuples from the outsourced data or
from the query result. Assume we randomly insert K fake tuples
into the original data of N tuples. If an attacker deletes one tuple
from the original database, the probability that it is not a fake tuple
is N/(N + K). Thus, with probability N/(N + K), a deletion is
not caught. If an attacker deletes m tuples from the database, he
can avoid being caught with probability

m−1∏
i=0

N − i

K + (N − i)
(4.3)

Figure 2 shows that for a dataset of N = 1, 000, 000 tuples, with
the number of fake tuples tuple ranges from 5% to 50% of N , the
probability of escaping detection when 1 to 100 tuples are deleted
from the database. It shows that the probability of escape decreases
sharply when the number of fake tuples or deletion increases. In
particular, when the fake tuples are more than 10% of the original
data, and more than 50 tuples are deleted, it is close to impossible
for the attacker to escape from being caught by the randomized
approach.
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Figure 2: Escape analysis (N=1,000,000)

5 Deterministic Approaches
Randomized approaches provide good protection against attacks.
However, for many applications, it has one significant drawback: in
order to audit query completeness, it has to store all randomly gen-
erated fake tuples at the client side, and actually evaluate queries on
them. In this section, we introduce a novel approach to eliminate
this drawback.

5.1 Overview

Instead of generating fake tuples randomly, we use some prede-
fined, deterministic functions to generate the fake tuples. Assume
a dataset T has n attributes. We consider function F : D1 ×D2 ×
· · ·Dn−1 → Dn where Di is the domain of the i-th attribute. In
other words, we first choose n − 1 attribute values, and then use
the function to derive the value of the remaining attribute. We then
form a fake tuple with the n attribute values, and add it into the
outsourced database. Figure 4 shows two possible functions for
generating fake tuples.

During query processing, we audit if the fake tuples returned by
the service provider are all the fake tuples that satisfy the query. To
make the auditing more efficient, we divide the feature space into
grids by discretizing each attribute (if the attribute is numerical).
We can regard the result of a range query as a set of fully covered or
partially covered grids in the feature space. Then, integrity auditing
boils down to counting how many fake tuples each fully covered or
partially covered grid contains.

The benefit of the deterministic method is obvious: instead of
storing a large set of fake tuples, we store a deterministic function
and a small grid data structure; instead of querying the fake tuples,
we ask how many tuples the deterministic function will produce
given a set of query predicates. In the following, we first discuss
how to audit query integrity using the deterministic method, and
then we describe the requirement of the deterministic functions.

5.2 Deterministic completeness auditing

In randomized approaches, auditing query completeness for a query
Q takes 3 steps. First, we find Cs(Q), the fake tuples in the query
result of Q’s; Second, we evaluate query Q against the client’s
copy of fake tuples to derive the result Cc(Q); Third, we check
if |Cs(Q)| = |Cc(Q)|. Deterministic completeness auditing only
differs in the second step. Because the fake tuples are not stored, in-
stead of evaluating Q against the local data, we evaluate it against
the deterministic function F , to find out how many tuples would
have satisfied query Q if they had been generated, stored, and queried.
We use an example to illustrate the auditing process and motivate

the use of grids in auditing.

EXAMPLE 1. Assume a dataset has two attributes: Price and
Quantity, the range of each attribute is from 0 to 100, and each at-
tribute has been discretized into four subranges {[0, 25), [25, 50),
[50, 75), [75, 100]} to form a 4× 4 grid, which is shown in Figure
3.

SELECT * FROM expTable

WHERE Price between 30 and 80 and

Quantity between 30 and 80

Figure 3: Grids Covered by a Query

The query Q in Figure 3 searches for tuples whose Price, Quan-
tity values are both in the range of [30, 80]. In order to find out how
many fake tuples are in this range, one approach is to generate all
the tuples in the range. However, this is rather inefficient. As we
can see from the figure, the query result involves 9 of the 16 grids.
Of these 9 grids, 8 are partially covered by Q, and 1 is fully covered
by Q. The total number of fake tuples that satisfy the query is:

n =
∑

g∈BF

ng +
∑

g∈BP

partial(g, Q) (5.1)

where BF is the set of fully covered grids, BP the set of partially
covered grids, ng is the total number of fake tuples generated in
grid g, and partial(g, Q) is a function that counts the number of
fake tuples in g that satisfy query Q. It is clear that since ng is irrel-
evant to query Q, and its value can be stored in the grid structure,
all we need is an efficient way to compute partial(g, Q) for each
grid g in the partially covered area.

5.3 Deterministic generating functions
The core of our deterministic approach is the function F . We want
to use a function F so that completeness auditing can be performed
efficiently. More specifically, we explore necessary properties of F
to speed up the evaluation of partial(g, Q).

First of all, any arbitrary function F such as sine, cosine, or
any polynomial functions can be used to generate the required set
of fake tuples for each grid. But in order to carry out integrity
auditing, we may have to regenerate all the fake tuples using F ,
which is not efficient.

We show that if the fake tuples generated by F in a grid g are
continuously covered by a range query Q, then we can evaluate
partial(g, Q) efficiently. We use an example to demonstrate what
it means by continuously covered. In Figure 4(a), there are two
points outside the query range, but their neighboring points on both
sides are inside the range. This is a case where points are not con-
tinuously covered by a range range. In contrast, the points gener-
ated by a monotonic function in Figure 4(b) are continuously cov-
ered.

It is easy to see that if fake tuples generated by F are always
continuously covered by a range query, then we do not have to
re-generate all fake tuples in partially covered grids for integrity
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audit. Thus, an intuitive improvement to the method is that instead
of using arbitrary functions, we put a constrain on the function so
that the tuples it generated are continuously covered.

Let a and b be two vectors in a k-dimensional space. We say
a ≺ b if and only if a[i] ≤ b[i] for each dimension i. In our case,
we regard F as a function that maps an (n-1)-dimensional vector to
a single value. We say F is monotonic increasing (or decreasing)
if F(a) ≤ F(b) for any a and b where a ≺ b (or b ≺ a).

THEOREM 2. Let R be the range predicates in a query. Let S
be a set of tuples generated by a monotonic function F where each
tuple tx ∈ S is in the form of tx = (x,F(x)). Then, for any
a ≺ b ≺ c, if ta and tc satisfy R, it must be true that tb satisfies R.

PROOF. Assume to the contrary that tb does not satisfy R, which
means there is at least one range [begin, end] on one dimension i
where begin ≤ tb[i] ≤ end does not hold. However, if 1 ≤ i ≤
n− 1, it contradicts the fact that a ≺ b ≺ c; if i = n, it contradicts
the fact that F(a) ≤ F(b) ≤ F(c).

Based on Theorem 2, we can guarantee that if two tuples are
covered by a query Q, then all tuples in-between the first and the
last covered tuple mush be covered by Q. Figure 4(b) is a simple
example that shows our intuition. As a result, to count the fake tu-
ples covered by Q, we only need to find the two intersection points
between the function F and the range of Q. We can use efficient
binary search algorithm to find the two intersection points and get
the count. We analyze an example below using linear generating
functions.

5.4 Linear generating function
In this section, we analyze an example where F specifies a line
segment in the feature space. We divide the whole n-dimension
feature space into grids. For each grid g, two points ~e and ~s in g’s
feature space defines a line segment, and hence defines F .

L = {~s + (~e− ~s) · t | t ∈ [0, 1]} (5.2)

Assume we generate k fake tuples in the grid. We generate the
tuples by uniformly selecting k points on the line segment from ~s
to ~e. Thus, the set of fake tuples are:

S = {~s + (~e− ~s) · j

k
| j ∈ {0, 1, · · · , k − 1}} (5.3)

We associate each grid with a 3-tuple (k,~s,~e) to indicate how fake
tuples are generated in the grid. Although ~s and ~e can be two arbi-
trary points in the feature space of the grid, we choose the points so
that they are as far apart as possible, so that the grid is better “cov-
ered” by the line segment1. We can simply set ~s = (l1, . . . , ln) and
1We study the distribution of the fake points and its relationship to
the integrity assurance in detail in Section 8.

~e = (u1, . . . , un), where (li, ui) is the range of dimension i for the
grid.

Note that although the fake tuples may exhibit a clear pattern
in the plain text data (e.g., here for a linear F , they are evenly
distributed on a line), neither the service provider nor the attackers
will be able to see the pattern, or utilize the pattern to break our
scheme. To show this, we conduct a detailed security analysis of
our scheme in Section 6, which shows that our scheme is provable
secure.

Using a deterministic function enables us to audit a query with-
out storing the faking tuples. For range queries, we do not even
have to re-generate the fake tuples in auditing. More specifically,
given a query Q, a client can figure out easily how many fake tuples
exist in a partially covered grid. This process is outlined by algo-
rithm partialLinear shown below. It first finds the two intersection
points ~ϕl and ~ϕh between the query rectangle and the line segment
using binary search (line 6-7), and then it computes the number of
fake tuples that lie between the two points (line 8-11).

Function partialLinear(g, Q)

Input: g : a grid partially covered by Q
Input: Q : a query
Output: ng : number of fake tuples in g that satisfy Q
begin1

(~s,~e, k) ← The parameters associated with g2
~ts ← ~s // First Fake Tuple in g3
~te ← ~s + (~e− ~s) · k−1

k
// Last Fake Tuple in g4

~ζ ← ~e−~s
k

// Gap Between Two Neighbor Fake5
Tuples in g

~ϕl = BSearchL(~ts,~te,~ζ,Q)6

~ϕh = BSearchH(~ts,~te,~ζ,Q)7
if ~s ≤ ~ϕl ≤ ~e AND ~s ≤ ~ϕh ≤ ~e AND ~ϕl ≤ ~ϕh then8

ng = (~ϕl == ~ϕh) ? 1 : ( k·(~ϕh−~ϕl)
~e−~s

)9

else10
ng = 011

return ng12

end13

5.5 Cost analysis
LetQ be an arbitrary query. Assume the outsourced data base con-
tains N fake tuples, out of which n satisfy Q. We analyze the cost
incurred by auditing the integrity of Q.

• COMMUNICATION COST: The extra cost of communica-
tion comes from sending the n fake tuples from the service
provider to the client. We denote this cost as n · ψN , where
ψN is the average cost of sending one tuple.

• COST ON THE SERVER SIDE: The extra cost comes from
evaluating Q on the fake tuples. We denote this cost as N ·
ψQ, where ψQ is the tuple average cost of processing Q.

• COST ON THE CLIENT SIDE: We decompose the cost into:
(i) ψD: per tuple cost of decryption; (ii) ψC : per tuple cost
of correctness auditing (the cost of analyzing the checksum
or the header); (iii) ψP : cost of completeness auditing for the
query. The extra cost at the client side is: n·ψD+n·ψC+ψP .

The completeness auditing consists of two tasks: (i) count
the number of fake tuples in the result of Q and (ii) de-
rive from F the number of fake tuples that satisfy Q. The



first task can be incorporated into tuple validation with vir-
tually no extra cost. For the second task, the cost is simply∑

g∈BP
2 log ng for linear F , where BP is the set of par-

tially covered grids and ng is the number of fake tuples in
a grid. Since log ng << log N , the cost is dominated by
n · ψD + n · ψC .

Thus, the total extra cost comes to:

N · ψQ + n · (ψN + ψD + ψC) (5.4)

It is clear that the extra cost for using fake tuples for integrity audit
is a linear function of N and n, the total number of fake tuples
in the outsourced database, and the number of fake tuples in each
query result. Thus, a criterion for our scheme is how many fake
tuples we need in order to reach certain accuracy in integrity audit.
We show in Section 9 that our scheme has good performance in this
regard.

6 Security Statement
Our data outsourcing scheme is a provably secure scheme assuming
that the underlying encryption function is a secure pseudorandom
permutation. We follow the standard notationss as in the practice-
oriented provable security literature[4, 3].

We first introduce some necessary definitions for developing our
theorem and proof.

DEFINITION 1. Function family
A function family F is a finite collection of functions together with
a probability distribution on them. All functions in the collection
are assumed to have the same domain and the same range.

There is a set of “keys” and each key names a function in F .
We use Fk to denote the function selected by key k in the function
family F .

DEFINITION 2. ε-distinguisher
Suppose that F0 and F1 are two function families. Let ε > 0 and
let f0 and f1 be two functions selected from F0 and F1 uniformly
randomly. A distinguisher A is an algorithm; given a function, A
outputs 0 or 1 as it determines whether the function is from F0 or
F1. We use AdvA to denote A’s advantage in distinguishing F0

from F1.

AdvA = |Pr[A(f0) = 1]− Pr[A(f1) = 1]|
We say algorithm A is an ε-distinguisher of F0 and F1 if AdvA >
ε.

DEFINITION 3. (q, t, ε)-pseudorandom
A function family F : U → V is (q, t, ε)-pseudorandom if there
does not exist an algorithm A that can ε-distinguish a pseudoran-
dom function from a truely random function. Here A is allowed to
use Fk as an oracle for q queries, and use no more than t compu-
tation time.

Given a dataset T , we generate a dataset S. We encrypt S ∪ T
by applying Fk, where Fk is a (q, t, ε)-pseudorandom permutation.
We then store the result, X = Fk(S ∪ T ), at the service provider.
The highest level of security is achieved if any subset from F (T )
is indistinguishable from a random subset of X to attackers. Here
we use m to denote |T | and n to denote |S|.

THEOREM 3. There does not exist an adversary algorithm that
can succeed in selecting l tuples from X such that all the l tuples
are in T with a possibility bigger than ( m

n+m
)l + ε with t− c com-

putation and q −m− n queries.

PROOF. (Sketch) We prove this by contradiction. We assume
there exists an algorithm G that can successfully choose l tuples
from X such that the tuples are in T with a probability signifi-
cantly higher than ( m

n+m
)l + ε. We then construct an algorithm A

that breaks Fk, that is, we show Fk is not a (t, q, ε)-pseudorandom
function.

We construct an algorithm A that works as follows. Algorithm
A passes T ∪ S to its oracle, which generates an encrypted Xe.
Algorithm A then passes Xe to algorithm G, and G selects l tuples.
Algorithm A then checks the l tuples to see whether they are all in
T . If it is the case, it outputs 1, otherwise it outputs 0.

Clearly, if the underlying encryption is a random permutation R,

then we have Pr[A(R) = 1] =
(m

l )
(n+m

l )
. However, if the under-

lying encryption is Fk, then algorithm G has advantage larger than
ε over a random algorithm in selecting l tuples from T , in other
words, we have Pr[A(Fk) = 1] = ( m

n+m
)l + E, where E > ε.

Let c be the amount of computation taken outside of G. The total
amount of computation is (t−c)+c = t and the number of queries
is (q −m− n) + m + n = q.

Thus, we have

AdvA = Pr[A(Fk) = 1]− Pr[A(R) = 1]

= (
m

n + m
)
l
+ E −

(
m
l

)
(

n+m
l

)

>

(
m
l

)
(

n+m
l

) + E −
(

m
l

)
(

n+m
l

)

= E > ε,

which contradicts the fact that Fk is a (t, q, ε)-pseudorandom func-
tion.

7 Beyond Simple Selection Query
As in previous work [16], we have mainly focused on simple selec-
tion queries. In this section, we study join operations and update
queries.

7.1 Integrity audit of join
Join is a very important operator in relational algebra. Previous
work either cannot handle arbitrary join queries [13, 9] or need
an explicit proof which may make the scheme impractical to de-
ploy [16] for a service provider (see Section 2 for a detailed discus-
sion). In this section, we discuss how our scheme supports join op-
erations without any additional requirement on the service provider.

Without much loss of generality, we assume the join query has
the following form:

SELECT *
FROM T1, T2

WHERE T1.A op T2.A AND T1.B op T2.B AND ...

AND pred(T1) AND pred(T2) AND ...

where op is =, >,≥, <,≤ or 6=, and pred(Ti) is a predicate on ta-
ble Ti.

Join Decomposition
As in auditing simple selection queries, we use the special header
value in the result tuple (Note here we have two headers, one for
T1 and the other for T2) to check whether the results are valid and
correct. Here, we focus on the completeness aspect of the integrity.

Let us consider a join operation between two tables T1 and T2.
Let T1 = T1o ∪ T1c and T2 = T2o ∪ T2c, where T1o and T2o are
the real tuples, and T1c and T2c are the fake tuples in T1 and T2.
Thus, the result of T1 ./ T2 can be divided into four cases:



1. T1c ./ T2c

2. T1c ./ T2o

3. T1o ./ T2c

4. T1o ./ T2o

In Figure 5, we assume that each of T1 and T2 contains 2 fake
and 2 real tuples, and their join results cover the above 4 cases. In
the figure, we use C in the header to indicate a fake tuple, and O a
real tuple.

1 2

Header1 Header2

Header2Header1

T1.B = T2.B

21

Figure 5: Decomposing a natural join between T1(A, B) and T2(B, C) on
column B into 4 parts.

Given the join query, the client can derive the fake tuples in T1

and T2 that satisfy the join condition. In other words, the client
derives T1c and T2c. Thus, if any tuple in T1c ./ T2c is missing
from the result of the join, we know that the service provider is
problematic.

However, for case 2, case 3, and case 4, we do not have such
guarantee, because the client does not know the content of T1o and
T2o. In other words it cannot derive the results of the join when the
join involves real tuples.

We show that, for case 2, case 3, and case 4, useful information
can be inferred from the join results to audit the join query. Con-
sider one of the tuples in the join result t = {1, 2, 2}, which falls
into case 4 (joined by two real tuples). It gives us the following
hint: At least one real tuple from T1 has value 2 in join column B.
(We can infer the same thing for T2). From this, we can further
infer that: All fake tuples in T2 whose column B value is 2 must be
in the join result (provided they satisfy all other predicates in the
query). Similar hints can be obtained from result tuples for case 2
and case 3.

In summary, we can use the value of join attributes in the result
of a join to audit the join query. Next, we formalize our analysis,
and develop an efficient algorithm to audit join queries using the
hints we described above.

Join Audit Algorithm
To audit join integrity, we use two pieces of information: the fake
tuples that satisfy the join condition (we obtain fake tuples through
the deterministic function FT ) and information derived from the
join result.

Indeed, using deterministic functions FT1 and FT2 , we can
easily obtain tuples in case 1: T1c ./ T2c. Then, we check if
T1c ./ T2c derived by the client really appear in the result. Ac-
cording to Theorem 1, we only need to check whether their count
match, which simplifies the operation.

To audit case 2, 3, and 4, we rely on the hints obtained from
the join attribute values in the join result returned by the service
provider. For each of the three cases, we find those fake tuples in
T1c and T2c that must join with at least one real tuple and hence
appear in the result of case 2 or case 3.

Let A be the set of join attributes. Let r.A op t.A denote the
join predicates. Let C2 and C3 denote the join results in case 2
and 3 respectively. We first obtain the set of fake tuples R and use
the corresponding auditing rules below to check whether integrity
condition is satisfied:

Rule A (Result tuple t is from case 2) :
R = {r|r ∈ T1c ∧ r.A op t.A}
Condition: ∀r(r ∈ R) → ∃o(o ∈ T2o ∧ r ./ o ∈ C2)

Rule B (Result tuple t is from case 3) :
R = {r|r ∈ T2c ∧ t.A op r.A}
Condition: ∀r(r ∈ R) → ∃o(o ∈ T1o ∧ o ./ r ∈ C3)

Rule C (Result tuple t is from case 4) :
R1 = {r|r ∈ T1c ∧ r.A op t.A}
R2 = {r|r ∈ T2c ∧ t.A op r.A}
Condition 1: ∀r(r ∈ R1) → ∃o(o ∈ T2o ∧ r ./ o ∈ C2)
Condition 2: ∀r(r ∈ R2) → ∃o(o ∈ T1o ∧ o ./ r ∈ C3)

For instance, case 4 corresponds to T1o ./ T2o. For any tuple
t ∈ T1o ./ T2o, the values of the join column A come from real
tuples in T1o and T2o. We then obtain R1 and R2, which are fake
tuples in T1c and T2c that will join with T2o and T1o respectively.
The two conditions in Rule C above basically checks if such join
results appear in C2 and C3. The correctness of the above rules can
be easily proved. We omit the proof here due to lack of space.

An efficient method to implement this auditing scheme for join
is to scan the join result once. For each result tuple, according to
which case it belongs to, we either count the tuples (Case 1) or
identify whether there are some result tuples inferred by this tuple
using the 3 rules above (Case 2, 3 and 4). The process can be
carried out by simply using the deterministic functions FT1 and
FT2 at runtime without any need to pre-store the fake tuples.

We use algorithm JoinAudit to audit a join operation. In the
algorithm, to audit the results from case 1, we count the number of
tuples in T1c ./ T2c both at the client side and in the result obtained
from the service provider (line 5-6, line 18-19). If the two count not
match we can alarm an attack (line 20-21). In order to use the hints
from the join results based on the above rules, we initiate a hash
table H which acts as a cache to temporarily memorize which fake
tuples should appear in the result, and every time we see a result
tuple t from case 2, 3 or 4, using one of the three rules, we generate
fake tuples needed to be checked, and insert them into the hash
table and check whether the integrity conditions are satisfied (line
7-17) (Given a result tuple t, let t.T1 be the tuple from T1 which
forms t, the same for t.T2). When we have processed all the result
tuples, we check all the entries of the hash table, if one entry of
hashtable is not marked with Checked, we know that some fake
tuples are missing in the result, so we alarm an attack (line 20-21).

7.2 Integrity audit of updates
Audit the integrity of database updates is a challenging task. The
goal is to make sure that every update operation is really executed
at the server side. In previous works, there either lacks consid-
eration of the update operation or the auditing scheme has large
overhead [13, 16]. In this work, we focus on auditing INSERT and
DELETE operations2 in outsourced databases.
2UPDATE is considered as a combination of INSERT and DELETE.



Function JoinAudit(Result)

Input: Result is result set from Server-Side
begin1

n ← 02
H ← A new hash table3
foreach tuple t ∈ Result do4

if t belongs to case 1 then5
n ← n + 16

if t belongs to case 2, 3, or 4 then7
/*Use FT1 , FT2 to generate fake tuples*/8
R ← generated fake tuples9
foreach r ∈ R do10

if r not in H then11
Insert r into H , Initiate Marker12

/*Using Infer Rules Condition to Check*/13
foreach i ∈ {1, 2} do14

if t.headeri is C then15
if t.Ti in HT but Not Marked then16

Mark the Entry Satisfied17

/*Count tuples in case 1 at the client side*/18
n′← |T1c ./ T2c|19
if n 6= n′ OR ∃ one entry in H not Satisfy then20

ALARM ATTACK21

end22

Insertion

To ensure that tuples are really inserted into the database, an intu-
itive auditing scheme is to insert some fake tuples along with the
real insertions. As a malicious attacker cannot distinguish a fake
tuple from a real tuple being inserted, we can provide probabilistic
integrity assurance for insert operations.

In our approach, the client maintains the number of points in
each cell of the grid. For each cell, if the increase of its den-
sity reaches a certain amount, insertion of fake tuples is triggered.
Additional fake tuples are generated by the same deterministic ap-
proach. Without loss of generality, we use linear functions as an
example to illustrate our approach.

As described in Section 5.4, using a linear function, fake tuples
generated for each cell uniformly distribute on a line segment de-
fined by the two points ~s and ~e in the cell. Assuming the cell cur-
rently has k fake tuples, we know that the gap between two neigh-
boring fake tuples on the line segment is |~ζ|, where ~ζ = ~e−~s

k
. In

other words, each fake tuple in the cell can be represented by ~s+~ζ·i,
where 0 ≤ i < k.

Our goal is to add new fake tuples without affecting the cur-
rent fake tuples. To increase the number of fake tuples on the
line segment, we shrink the gap ~ζ into ~ζ′, and at the same time,
we ensure the set of fake tuples defined by the new gap ~ζ′ con-
tains those generated by the old gap ~ζ. That is, we want to ensure
(∀i)(∃i′)(~s + ~ζ · i = ~s + ~ζ′ · i′), which leads to i′ =

~ζ
~ζ′ · i. Since

i′ is an integer, it must be true that ~ζ ≡ 0(mod ~ζ′). In other words,
if we choose ~ζ′ that can divide ~ζ exactly, we can guarantee the old
fake tuples can remain in the cell when new gap can also regener-
ate the set of previous generated fake tuples. Thus, our insertion
auditing scheme imposes only neglectable overhead.

We simply choose ~ζ′ = 1
2
· ~ζ. Assume we have k fake tuples

previously in a grid cell g. We generate the additional k fake tu-
ples, and insert them into the outsourced database, and modify the
current number of fake tuples of g from k to 2k.

If there are more than one client, we must ensure the other clients
know about the change. Once the inserted fake tuples are in the
database (at first, only the client that initiates the insertion can audit
the insertion), they will show up in queries issued by other clients.
To inform other clients of the change, we extended the header of
the newly inserted fake tuples to include some new information,
E(2k ⊕ t), which means the number of fake tuples in the grid cell
that contains the current fake tuple has increased to 2k since time t.
With the propagation of the information, any client will be auditing
with the up-to-date information about the fake tuples.

Deletion
There are two issues with deletions. First, a delete operation may
remove fake tuples in the outsourced database if fake tuples are in
the range of the delte operation. The problem has a straightforward
solution because fake tuples are generated by deterministic func-
tions and the client has full knowledge of their generating mecha-
nism. Before sending out delete operations to the service provider,
the client can modify the delete statements to exclude fake tuples.

Second, we need to audit whether delete statements are truthfuly
executed by the service provider. In the same spirit of auditing
insertion queries, we can first remove some fake tuples from a cell,
and then check whether they are indeed deleted in the database. We
describe the details of the audit below.

Removing fake tuples in a grid cell is equivalent to stretching
the gap between neighboring fake tuples. Moreover, in order not to
make the set of fake tuples defined by the new gap totally different
from the old fake tuples (which means we have to delete all the
old fake tuples in the grid and insert the new fake tuples generated
under the new gap), we ensure that fake tuples defined by the new
gap ~ζ′ form a subset of the fake tuples defined by the old gap ~ζ.
That is, we want to ensure (∀i′)(∃i)(~s+ ~ζ · i = ~s+ ~ζ′ · i′). Similar
in shrinking the gap, it leads to ~ζ′ ≡ 0(mod ~ζ). In other words,
the new gap ~ζ′ should be divided by ~ζ exactly. We simply choose
~ζ′ = 2 · ~ζ, which indicates that we have a half of fake tuples now
in the corresponding grid cell.

After the stretching, we can form the additional delete operations
to remove the deleted fake tuples from the outsourced database, and
then modify the current number of fake tuples in the corresponding
grid from k to b k

2
c.

8 Distribution-Guided Approach
The feature space is partitioned into a grid of cells. In high dimen-
sional feature space, it may introduce two problems. First, most
cells will be empty and hardly queried. Fake tuples generated into
these cells are “wasted”. Second, maintaining a high dimensional
grid at a client may prove to be impractical. We address these prob-
lems in this section.

8.1 Histogram-Based method
We provide integrity assurance by analyzing the fake tuples in the
query result. The more fake tuples show up in the query result, the
better assurance we can provide. This result is revealed by Eq 4.3.
On the other hand, the more fake tuples we add into the outsourced
database, the higher the cost of storage and query processing. The
question is then the following: where should we put the fake tu-
ples in the feature space so that they have higher probability to be
queried?

In our approach, we generate fake tuples that distribute uniformly
in the feature space. If queries also distribute uniformly in the fea-



ture space, then every fake tuple has equal probability to be queried.
Thus, the uniform distribution of the fake tuples maximizes the
overall quality of integrity assurance.

However, queries may not distribute uniformly in the feature
space. For example, in many real applications the distribution of
the query follows that of the data, which means more queries are
asked in denser regions. Assume the probability that a certain low
density region being accessed by a query is close to 0, then fake
tuples generated into this region are useless for providing integrity
assurance, because they will not show up in query results.

Our grid-based tuple generation scheme can easily be adjusted
in accordance with any query distribution. Without loss of general-
ity, let us assume the query distribution follows the distribution of
the data. We show how our scheme makes use of the distribution
information.

For each grid cell, we record its density, that is, the number of
tuples in the grid. The density information reflects the data dis-
tribution, and in our case, the query distribution as well. If the
number of fake tuples we generate for each grid is proportional to
its density, then we guarantee distribution match at the grid level.
In Figure 6, a 2-dimension data space is divided into a 4 × 4 grid.
We count the number of tuples in each grid cell, and generate fake
tuples using the deterministic method in an amount proportional to
the tuple counts.

Figure 6: Divide Data into Grid of Buckets

We show the advantage of the distribution-guided approach us-
ing an experiment. We use the lineitem table in the 1GB TPCH
data [18], and we randomly generate 10 batches of 100 test queries
using TPCH query Q6 as a template, which is a range query on
three attributes l shipdate, l quantity, and l extendedprice. E-
ach query is a “unit” query in the sense that its range has the same
volume as that of a grid cell. For the randomized approach, we
generate fake tuples randomly in the whole feature space. For the
distribution-guided approach, we divide the feature space of the 3
attributes into a 10× 10× 10 grid, for each cell in the grid we gen-
erate fake tuples in an amount that matches its density. The 1000
test queries are generated in such a way that the centers of their
query range follow the distribution of the data.

The experiment result in Figure 7 validate that the distribution
guided approach has more fake tuples covered in average when
query distribute following the distribution of original data.

8.2 Optimize the histogram structure

For high-dimensional data, the grid becomes very sparse and many
cells have very low density and contain no fake tuples. Such cells
are useless for integrity audit, but the grid itself may introduce huge
storage overhead at the client side. It is thus necessary to shrink the
grid structure.

Instead of partitioning the feature space into grids which may
contain lots of useless cells, we create cells in an incremental way:
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we first divide the space into a small number of cells, and then it-
erately split the cells whose density is above a upperbound thresh-
old θh, and eliminate cells whose density is below a lowerbound
threshold θl.

As an example, let θl = 12% and θh = 24% for the data shown
in Figure 6. In the first iteration, we divide the feature space on
dimension X into 4 cells: one cell’s density is between θ1 and θh,
and the other three all have density larger than θh, so we divide the
three cells into smaller cells on dimension Y in the second iteration.
Those cells with density smaller than θl (shown as dotted circle in
Figure 8) are deleted.
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Figure 8: Iterative Gridding

In our optimization, we split the dense cells along one attribute at
a time. Since our goal is to reduce the number of cells, a heuristic is
to pick the attribute that has the most skew distribution to split. The
reason is that dividing an attribute with uniform value distribution
creates less lower opportunity to eliminate low density cells. In our
approach, we simply use variance as a measure of the skewness of
the attributes.

Finally, to audit query completeness, we need to find which cells
are partially covered by the query and which are fully covered by
the query. Since the cells are no longer regular, coverage analysis
becomes more difficult. Thus, we are actually trading efficiency for
storage. However, in the database outsource scenario, the clients
are often resource limited devices, which means reducing storage
overhead is more important.

9 Empirical Studies
In this section, we evaluate the security assurance and performance
overhead of our integrity auditing scheme.



9.1 Experiment Environment

We use a Pentium IV D 2.8GHz PC with 512MB RAM and a
160GB SCSI hard disk as the server, and Pentium IV 1.6GHz PCs
with 256MB RAM and 40GB hard disks as clients. Clients and
the server are connected with a local Ethernet network running at
100MBps. We use IBM DB2 v8.2 to store data on the server side.
Code on the client side is developed in JAVA with the JDK/JRE 1.5
develop kit and Runtime Library.

Data setup The data we used in our experiment is derived from the
TPC-H benchmark [18], which models decision support systems
that store large volumes of data and process queries of a high degree
of complexity.

For auditing simple range queries, we generate a TPC-H bench-
mark database with a scale factor of 1 which has 1GB data. We
use the lineitem table for our experiment on range queries. This
table has roughly 6 million records. While the lineitem table has
many attributes, we are particularly interested in three numerical at-
tributes: l shipdate, l extendedprice and l quantity. We tailor
the data in the table by extracting the values of the three attributes
along with a tid value for each tuple. We form a derived table de-
fined as T (tid, l quantity, l extendedprice, l shipdate), which
is then encrypted using the scheme discussed in Section 3 to be
stored at the outsourced database server.

We create another TPC-H benchmark database with a scale fac-
tor of 0.1 for our experiment on join operations. We use table
customer and orders for our experiment and also experiment with
range queries. We encrypt and store the tailored tables customer(tid,
c custkey), orders(tid, o orderkey , o orderdate) at the server side.

Fake tuple setup In our experiment, we assume that the queries
distribute according to the distribution of original data. As dis-
cussed in section 8, we use a Equal-Width Histogram to estimate
the original data’s distribution. (For the lineitem table. We divide
it into 10 × 10 × 10 grids using the three attributes l quantity,
l extendedprice, and l shipdate, and similarly for the other two
tables customer and orders). And we use the grids to guide the
process of fake tuple generation and integrity auditing with linear
function as discussed in Section 5.

Query setup The type of queries for experiment with range query
is derived from TPC-H benchmark query Q6, which is shown as
follows:

SELECT *
FROM lineitem
WHERE l shipdate BETWEEN ’: d1’ AND ’: d2’
AND l extendedprice BETWEEN ’: p1’ AND ’: p2’
AND l quantity BETWEEN ’: q1’ AND ’: q2’

The quoted variables are all template parameters, and in our ex-
periments, we generate 100 Unit Queries which have the same
range as a grid in the Histogram by changing these template pa-
rameters. And to ensure that the set of queries following original
data’s distribution, we select the center of the query range(which
can be represented by ( d1+d2

2
, p1+p2

2
, q1+q2

2
)) according to the

distribution information from the Histogram(By signing a higher
probability to fall into a grid/bucket of the Histogram which has
higher density).

The type of queries for experiment with join is derived from
TPC-H benchmark query Q3 , which is in the following form:

SELECT *
FROM customer,orders
WHERE c custkey = o custkey
AND o orderdate BETWEEN ’: d1’ AND ’: d2’

The template parameters d1 are selected randomly in the domain
range of o orderdate, and we guarantees the value of d2 − d1

equals the range of a grid on dimension o orderdate to form a
Unit Selection Join Query.

9.2 Compare with existing methods

We first compare our method with existing integrity auditing schemes:
Merkle Hash tree [14] and Challenge Token [16].

Our scheme is more practical than the existing schemes because
our method is server transparent – we do not require changes of the
DBMSs of the service provider, while the Merkle Hash tree based
integrity auditing scheme need the server to maintain a Merkle
Hash tree for the data and the Challenge Token based scheme need
the service provider to be aware of the Challenge/Answer protocol.
This transparency of our integrity auditing scheme makes it more
easily deployable in database services.

In the experiment, we implemented the Merkle Hash tree as an
in memory tree structure with a fan-out of 50, and we use the most
commonly used public digital signature scheme RSA [15] as the
signature function, and MD5 [2] as the hashing function. For the
Challenge Token based scheme, we divide the data into 10 seg-
ments and use MD5 Hashing [2] to generate the challenge token.
In our experiment, we use an one dimension table and we generate
batches of simple range queries with same value range length.
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Figure 10: Server & Client Cost Analysis

From Figure 9, we see that our integrity auditing scheme has a
very low setup cost because we only need to select the deterministic
functions and use them to generate the fake tuples. The construc-
tion cost of Merkle hash tree is very high because lots of signatures
and hash functions must be computed. The construction time for
Challenge Token is also very high because for each client we need



to pre-compute the hash value for each query that may need to be
sent to the server, which further makes this scheme not practical in
our application scenario where the clients are only small devices
with limited computing and storage resources.

The computation cost on the server shown in Figure 10(a) is in-
dicates that our scheme poses little additional cost on the service
provider, if any. Indeed, the only overhead is additional scan cost
of the fake tuple. But, with our deterministic method, as shown in
Figure 10(b), we reduce the client’s computing cost, which is very
important for our outsourcing database scenario where the clients
are often small devices.

9.3 Simple selection query experiment
Security evaluation As the correctness aspect of integrity has been
guaranteed by the special header column which is discussed exten-
sively in Section 3, we focus on analyzing the completeness aspect.

We simulate data deletion attacks by randomly deleting m tuples
from the original data. The only chance that an attacker can avoid
being caught is when none of the m tuples is a fake tuple. For
each m range from 1 to 30, we repeats the random deletion 100
times using 5 different random seeds. The averaged results and
confidential interval is shown in Figure 11(a). From the figure, we
can easily find that the escape probability decreases sharply as the
number of deletion increases. And specifically, with only 10% fake
tuples generated, we can guarantee an escape probability lower than
25% if more than 20 tuples are deleted, which is a small number
given that the total number of tuples is 6 million.
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Figure 11: Security Evaluation

We simulate query result deletion attacks by randomly deleting
m tuples from each of the 100 test unit queries’ results. For each m
range from 1 to 30, we repeat the experiment 5 times and find the
average probability of escaping detection among the 100 queries
( Auditing Failed Query Number

Total Query Number ) and the confidential interval. The experi-
ment results are shown in Figure 11(b). We can see from the curves
in Figure 11(b), the probability of escaping from being caught with
a deletion attack approaches 0 rapidly as the number of deletion
increases. Additionally, by varying the percentage of fake tuples
from 5% to 50%, we can see from Figure 11(b) the more fake tu-
ples we have for the data the lower the escaping probability, which
coincident with our intuition.

Client performance analysis We compare the client side perfor-
mance in the following two settings: (i) just as in the randomized
approach, storing the set of fake tuples in a relation table at the
client side; (ii) Instead of explicitly storing all the fake tuples, au-
diting the integrity against the deterministic function F. We repeat
the 100 Unit Queries at the client side 5 times and get the aver-
age which is shown in Figure 12. It can be see easily that auditing

the deterministic function cost nearly nothing compared to audit-
ing the table, which have a cost grow linearly with the increase of
fake tuples. So the experiment validates our scheme’s efficiency in
integrity auditing, which may benefit our scheme in the outsource
database scenario, as in such scenario we may have some mobile
devices as the client which have very limited computation capabil-
ity.
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Figure 12: Client Side Performance Analysis

Server performance analysis Using our scheme for integrity au-
diting will introduce query overhead at the server side as the addi-
tional fake tuples need to be processed as discussed in Section 5.5.
In the experiment, we vary the percentage of fake tuples from 5%
to 50%. By submitting the 100 unit queries to the server, we collect
the average processing cost of these queries using the performance
monitor feature of DB2, we repeat the experiment 5 times and get
an averaged result shown in Figure 13.

Moreover, in this experiment, we compared the cost for three
cases: (i) Without integrity auditing scheme, which is shown as the
thick black line; (ii) Without fake tuples but having the authentica-
tion header and encryption scheme enabled, which is shown as the
thick red line; (iii) All features of the integrity auditing scheme are
enabled, which is shown as the bar chart. The result is shown in
Figure 13. From the Figure, we can easily figure out that the cost
increases slowly as we increase the number of fake tuple stored at
the server side. And the additional fake tuples will not cause great
degradation of performance at the service side, which satisfies our
motivation to lower the cost at the server side.
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Figure 13: Server Side Performance Analysis

9.4 Join query experiment
We analyze the security of join auditing scheme by randomly delet-
ing from the 100 random join query’s result m tuples and comput-
ing the average escape detection probability among the 100 queries.

As described in Section 7.1, we have two types of information
which can be utilized to audit a join query’s result: (i) the set of



fake tuples generated using the deterministic function; (ii) join at-
tribute value from a result tuple. In the experiment, we compare
the security performance when using only (i) with that when using
both (i) and (ii). We repeat the experiment 5 times with the num-
ber of fake tuples ranging from 10% to 40% of original data. The
averages are shown in Figure 14. From the Figure, we can easily
find out that using the information given by the join result tuple can
greatly increase the security level.
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Figure 14: Join Security Analysis

Moreover, the additional burden at the client side when utilizing
the information from both case (i) and case (ii) will not cause a
great performance degradation at the client side, which we show in
Figure 15.
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Figure 15: Join Efficiency Analysis

10 Conclusion
IT outsourcing has become critical to business operations and vital
for businesses to sustain their competitive advantages. Maintaining
security in IT outsourcing is important for maintaining the growth
of IT outsource services. As data processing is among the most
important components of IT services, we address the problem of
how to audit the integrity of database services in the paper. Previous
approaches can only be effective when the verifier or the user of the

service maintains a copy of some outsourced data. However, the
overhead in maintaining such a copy undoes the benefit of database
outsourcing. Our approach uses deterministic functions to embed
fake tuples in the outsourced data. By simply keeping track of the
definition of the deterministic functions, the client keeps track of
all the fake tuples in the outsourced data, which enables efficient
auditing of the query integrity of the service provider.
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